Oracle® Database Administrator's Guide 11g Release 2 (11.2) Part Number E10595-04 |
|
|
View PDF |
You analyze a schema object (table, index, or cluster) to:
Collect and manage statistics for it
Verify the validity of its storage format
Identify migrated and chained rows of a table or cluster
Note:
Do not use theCOMPUTE
and ESTIMATE
clauses of ANALYZE
to collect optimizer statistics. These clauses are supported for backward compatibility. Instead, use the DBMS_STATS
package, which lets you collect statistics in parallel, collect global statistics for partitioned objects, and fine tune your statistics collection in other ways. The cost-based optimizer, which depends upon statistics, will eventually use only statistics that have been collected by DBMS_STATS
. See Oracle Database PL/SQL Packages and Types Reference for more information on the DBMS_STATS
package.
You must use the ANALYZE
statement (rather than DBMS_STATS
) for statistics collection not related to the cost-based optimizer, such as:
To use the VALIDATE
or LIST
CHAINED
ROWS
clauses
To collect information on freelist blocks
The following topics are discussed in this section:
You can use the DBMS_STATS
package or the ANALYZE
statement to gather statistics about the physical storage characteristics of a table, index, or cluster. These statistics are stored in the data dictionary and can be used by the optimizer to choose the most efficient execution plan for SQL statements accessing analyzed objects.
Oracle recommends using the more versatile DBMS_STATS
package for gathering optimizer statistics, but you must use the ANALYZE
statement to collect statistics unrelated to the optimizer, such as empty blocks, average space, and so forth.
The DBMS_STATS
package allows both the gathering of statistics, including utilizing parallel execution, and the external manipulation of statistics. Statistics can be stored in tables outside of the data dictionary, where they can be manipulated without affecting the optimizer. Statistics can be copied between databases or backup copies can be made.
The following DBMS_STATS
procedures enable the gathering of optimizer statistics:
GATHER_INDEX_STATS
GATHER_TABLE_STATS
GATHER_SCHEMA_STATS
GATHER_DATABASE_STATS
See Also:
Oracle Database Performance Tuning Guide for information about using DBMS_STATS
to gather statistics for the optimizer
Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_STATS
package
To verify the integrity of the structure of a table, index, cluster, or materialized view, use the ANALYZE
statement with the VALIDATE STRUCTURE
option. If the structure is valid, no error is returned. However, if the structure is corrupt, you receive an error message.
For example, in rare cases such as hardware or other system failures, an index can become corrupted and not perform correctly. When validating the index, you can confirm that every entry in the index points to the correct row of the associated table. If the index is corrupt, you can drop and re-create it.
If a table, index, or cluster is corrupt, you should drop it and re-create it. If a materialized view is corrupt, perform a complete refresh and ensure that you have remedied the problem. If the problem is not corrected, drop and re-create the materialized view.
The following statement analyzes the emp
table:
ANALYZE TABLE emp VALIDATE STRUCTURE;
You can validate an object and all dependent objects (for example, indexes) by including the CASCADE
option. The following statement validates the emp
table and all associated indexes:
ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;
By default the CASCADE
option performs a complete validation. Because this operation can be resource intensive, you can perform a faster version of the validation by using the FAST
clause. This version checks for the existence of corruptions using an optimized check algorithm, but does not report details about the corruption. If the FAST
check finds a corruption, you can then use the CASCADE
option without the FAST
clause to locate it. The following statement performs a fast validation on the emp
table and all associated indexes:
ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE FAST;
You can specify that you want to perform structure validation online while DML is occurring against the object being validated. There can be a slight performance impact when validating with ongoing DML affecting the object, but this is offset by the flexibility of being able to perform ANALYZE
online. The following statement validates the emp
table and all associated indexes online:
ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE ONLINE;
You can look at the chained and migrated rows of a table or cluster using the ANALYZE
statement with the LIST
CHAINED
ROWS
clause. The results of this statement are stored in a specified table created explicitly to accept the information returned by the LIST
CHAINED
ROWS
clause. These results are useful in determining whether you have enough room for updates to rows.
To create the table to accept data returned by an ANALYZE...LIST
CHAINED
ROWS
statement, execute the UTLCHAIN.SQL
or UTLCHN1.SQL
script. These scripts are provided by the database. They create a table named CHAINED_ROWS
in the schema of the user submitting the script.
Note:
Your choice of script to execute for creating theCHAINED_ROWS
table is dependent upon the compatibility level of your database and the type of table you are analyzing. See the Oracle Database SQL Language Reference for more information.After a CHAINED_ROWS
table is created, you specify it in the INTO
clause of the ANALYZE
statement. For example, the following statement inserts rows containing information about the chained rows in the emp_dept
cluster into the CHAINED_ROWS
table:
ANALYZE CLUSTER emp_dept LIST CHAINED ROWS INTO CHAINED_ROWS;
See Also:
Oracle Database Reference for a description of the CHAINED_ROWS
table
"Using the Segment Advisor" for information on how the Segment Advisor reports tables with excess row chaining.
You can use the information in the CHAINED_ROWS
table to reduce or eliminate migrated and chained rows in an existing table. Use the following procedure.
Use the ANALYZE
statement to collect information about migrated and chained rows.
ANALYZE TABLE order_hist LIST CHAINED ROWS;
Query the output table:
SELECT * FROM CHAINED_ROWS WHERE TABLE_NAME = 'ORDER_HIST'; OWNER_NAME TABLE_NAME CLUST... HEAD_ROWID TIMESTAMP ---------- ---------- -----... ------------------ --------- SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAA 04-MAR-96 SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAB 04-MAR-96 SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAC 04-MAR-96
The output lists all rows that are either migrated or chained.
If the output table shows that you have many migrated or chained rows, then you can eliminate migrated rows by continuing through the following steps:
Create an intermediate table with the same columns as the existing table to hold the migrated and chained rows:
CREATE TABLE int_order_hist AS SELECT * FROM order_hist WHERE ROWID IN (SELECT HEAD_ROWID FROM CHAINED_ROWS WHERE TABLE_NAME = 'ORDER_HIST');
Delete the migrated and chained rows from the existing table:
DELETE FROM order_hist WHERE ROWID IN (SELECT HEAD_ROWID FROM CHAINED_ROWS WHERE TABLE_NAME = 'ORDER_HIST');
Insert the rows of the intermediate table into the existing table:
INSERT INTO order_hist SELECT * FROM int_order_hist;
Drop the intermediate table:
DROP TABLE int_order_history;
Delete the information collected in step 1 from the output table:
DELETE FROM CHAINED_ROWS WHERE TABLE_NAME = 'ORDER_HIST';
Use the ANALYZE
statement again, and query the output table.
Any rows that appear in the output table are chained. You can eliminate chained rows only by increasing your data block size. It might not be possible to avoid chaining in all situations. Chaining is often unavoidable with tables that have a LONG
column or large CHAR
or VARCHAR2
columns.