

Oracle® TimesTen In-Memory Database
SQL Reference

Release 11.2.1

E13070-03

August 2009

Oracle TimesTen In-Memory Database SQL Reference, Release 11.2.1

E13070-03

Copyright © 1996, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Related documents.. xi
Conventions ... xi
Documentation Accessibility .. xii
Technical support .. xiii

What’s New in SQL... xv

Access Control ... xv
PL/SQL support .. xv
Oracle In-Memory Database Cache (IMDB Cache).. xvi
Asynchronous materialized views ... xvi
RETURNING ... INTO clause ... xvii
ROWID data type ... xvii
Duplicate parameter names.. xvii
Bitmap indexes ... xvii
Set operators in subqueries ... xvii
Enhanced ":" parameter markers.. xvii
Multiline C-style comments.. xvii
View and sequence names .. xvii

1 Data Types

Type specifications ... 1-1
ANSI SQL data types... 1-5
Types supported for backward compatibility in Oracle type mode .. 1-7
TimesTen type mapping.. 1-9
Character data types.. 1-11

CHAR.. 1-11
NCHAR .. 1-12
VARCHAR2 ... 1-13
NVARCHAR2.. 1-14

Numeric data types ... 1-15
Exact and approximate numeric data types.. 1-15

NUMBER... 1-15
TT_BIGINT.. 1-17

iv

TT_INTEGER.. 1-18
TT_SMALLINT... 1-19
TT_TINYINT... 1-19
Floating-point numbers .. 1-19

BINARY_DOUBLE ... 1-20
BINARY_FLOAT .. 1-20
FLOAT and FLOAT (n).. 1-20

BINARY and VARBINARY data types .. 1-20
Numeric precedence ... 1-21
ROWID data type .. 1-21
Datetime data types .. 1-22

DATE... 1-22
TIME.. 1-22
TIMESTAMP.. 1-23
TT_DATE.. 1-23
TT_TIMESTAMP... 1-23

TimesTen intervals .. 1-23
Using INTERVAL data types .. 1-23
Using DATE and TIME data types ... 1-23
Handling timezone conversions ... 1-24
Datetime and interval data types in arithmetic operations .. 1-24
Restrictions on datetime and interval arithmetic operations ... 1-26

Storage requirements.. 1-26
Data type comparison rules... 1-27

Numeric values.. 1-27
Date values ... 1-27
Character values .. 1-27

Binary and linguistic sorting .. 1-28
Blank-padded and nonpadded comparison semantics.. 1-28

Data type conversion .. 1-28
Implicit data type conversion.. 1-28

NULL values... 1-29
INF and NAN ... 1-29

Constant values ... 1-30
Primary key values ... 1-30
Selecting Inf and NaN (floating-point conditions)... 1-30
Expressions involving Inf and NaN ... 1-31

Overflow and truncation.. 1-31
Underflow ... 1-32
Replication limits .. 1-32
TimesTen type mode (backward compatibility).. 1-32

Data types supported in TimesTen type mode... 1-33
Oracle data types supported in TimesTen type mode... 1-36

2 Names and Parameters

Basic names.. 2-1
Owner names .. 2-1

v

Compound identifiers ... 2-2
Dynamic parameters .. 2-2
Duplicate parameter names.. 2-3
Inferring data type from parameters .. 2-3

3 Expressions

ROWID specification .. 3-1
ROWNUM specification ... 3-1
Expression specification.. 3-3
Subqueries ... 3-6
Aggregate functions ... 3-8
Constants... 3-11
Format models.. 3-16

Number format models.. 3-17
Number format elements.. 3-17

Datetime format models... 3-20
Datetime format elements.. 3-21
Format model for ROUND and TRUNC date functions... 3-23
Format model for TO_CHAR of TimesTen datetime data types ... 3-24

ABS... 3-26
ADD_MONTHS .. 3-27
ASCIISTR ... 3-29
CASE .. 3-30
CAST .. 3-32
CHR.. 3-33
CEIL.. 3-34
COALESCE ... 3-35
CONCAT ... 3-36
DECODE ... 3-38
EXTRACT.. 3-39
FLOOR... 3-40
GREATEST ... 3-41
LEAST.. 3-43
LOWER and UPPER.. 3-45
LPAD .. 3-46
LTRIM.. 3-48
MOD .. 3-50
NCHR .. 3-51
NLSSORT.. 3-52
NUMTODSINTERVAL .. 3-54
NUMTOYMINTERVAL ... 3-55
NVL .. 3-56
POWER.. 3-57
ROUND (date) ... 3-58
ROUND (expression).. 3-59
RPAD ... 3-61
RTRIM ... 3-63

vi

SIGN .. 3-65
SQRT ... 3-67
String functions ... 3-68

SUBSTR .. 3-69
INSTR ... 3-70
LENGTH .. 3-71

SYS_CONTEXT ... 3-72
SYSDATE and GETDATE ... 3-74
TO_CHAR... 3-76
TO_DATE.. 3-78
TO_NUMBER ... 3-79
TRIM.. 3-80
TRUNC (date)... 3-83
TRUNC (expression)... 3-84
TT_HASH ... 3-85
UID ... 3-86
UNISTR ... 3-87
USER functions.. 3-88

CURRENT_USER.. 3-89
USER ... 3-90
SESSION_USER... 3-91
SYSTEM_USER.. 3-92

4 Search Conditions

Search condition general syntax ... 4-2
ALL/ NOT IN predicate (subquery).. 4-4
ALL/NOT IN predicate (value list) ... 4-6
ANY/ IN predicate (subquery) ... 4-8
ANY/ IN predicate (value list) .. 4-10
BETWEEN predicate ... 4-13
Comparison predicate... 4-14
EXISTS predicate... 4-16
IS INFINITE predicate ... 4-18
IS NAN predicate .. 4-19
IS NULL predicate... 4-20
LIKE predicate ... 4-21

NCHAR and NVARCHAR2.. 4-23

5 SQL Statements

Comments within SQL statements ... 5-1
ALTER ACTIVE STANDBY PAIR .. 5-2
ALTER CACHE GROUP ... 5-6
ALTER FUNCTION ... 5-8
ALTER PACKAGE .. 5-10
ALTER PROCEDURE ... 5-12
ALTER REPLICATION .. 5-14
ALTER SESSION... 5-23

vii

ALTER TABLE.. 5-28
ALTER USER.. 5-40
COMMIT .. 5-42
CREATE ACTIVE STANDBY PAIR .. 5-43
CREATE CACHE GROUP ... 5-49
CREATE FUNCTION ... 5-62
CREATE INDEX .. 5-65
CREATE MATERIALIZED VIEW .. 5-69
CREATE MATERIALIZED VIEW LOG.. 5-74
CREATE PACKAGE ... 5-76
CREATE PACKAGE BODY... 5-78
CREATE PROCEDURE .. 5-79
CREATE REPLICATION.. 5-82

CHECK CONFLICTS.. 5-89
CREATE SEQUENCE ... 5-96
CREATE TABLE ... 5-99

Column Definition .. 5-104
CREATE USER ... 5-114
CREATE VIEW... 5-116
DELETE ... 5-118
DROP ACTIVE STANDBY PAIR... 5-121
DROP CACHE GROUP ... 5-122
DROP FUNCTION ... 5-123
DROP INDEX... 5-124
DROP [MATERIALIZED] VIEW ... 5-126
DROP MATERIALIZED VIEW LOG .. 5-127
DROP PACKAGE [BODY] .. 5-128
DROP PROCEDURE .. 5-130
DROP SEQUENCE ... 5-131
DROP REPLICATION.. 5-132
DROP TABLE ... 5-133
DROP USER ... 5-134
FLUSH CACHE GROUP.. 5-135
GRANT.. 5-137
INSERT.. 5-139
INSERT...SELECT .. 5-142
LOAD CACHE GROUP ... 5-143
MERGE.. 5-147
REFRESH CACHE GROUP .. 5-150
REFRESH MATERIALIZED VIEW ... 5-153
REVOKE.. 5-154
ROLLBACK .. 5-156
SELECT.. 5-157

SelectList ... 5-167
TableSpec.. 5-170
DerivedTable.. 5-171
JoinedTable... 5-172

viii

TRUNCATE TABLE .. 5-174
UNLOAD CACHE GROUP .. 5-176
UPDATE .. 5-178

Join update ... 5-181

6 Privileges

System privileges ... 6-1
Object privileges .. 6-3
Privilege hierarchy ... 6-4
The PUBLIC role... 6-5

7 System and Replication Tables

Tables and views reserved for internal or future use .. 7-1
Required privileges to access system tables and views.. 7-3
SYS.ALL_ARGUMENTS .. 7-4
SYS.ALL_COL_PRIVS .. 7-7
SYS.ALL_DEPENDENCIES ... 7-8
SYS.ALL_DIRECTORIES ... 7-9
SYS.ALL_ERRORS ... 7-10
SYS.ALL_IDENTIFIERS .. 7-11
SYS.ALL_OBJECTS .. 7-12
SYS.ALL_PLSQL_OBJECT_SETTINGS... 7-13
SYS.ALL_PROCEDURES .. 7-14
SYS.ALL_SOURCE ... 7-16
SYS.ALL_STORED_SETTINGS .. 7-17
SYS.ALL_TAB_PRIVS .. 7-18
SYS.ALL_USERS ... 7-19
SYS.CACHE_GROUP... 7-20
SYS.COLUMNS... 7-22
SYS.COL_STATS ... 7-24
SYS.DBA_ARGUMENTS .. 7-25
SYS.DBA_COL_PRIVS .. 7-26
SYS.DBA_DEPENDENCIES... 7-27
SYS.DBA_DIRECTORIES... 7-28
SYS.DBA_ERRORS .. 7-29
SYS.DBA_IDENTIFIERS... 7-30
SYS.DBA_OBJECTS ... 7-31
SYS.DBA_OBJECT_SIZE... 7-32
SYS.DBA_PLSQL_OBJECT_SETTINGS.. 7-33
SYS.DBA_PROCEDURES ... 7-34
SYS.DBA_SOURCE .. 7-35
SYS.DBA_STORED_SETTINGS ... 7-36
SYS.DBA_SYS_PRIVS ... 7-37
SYS.DBA_TAB_PRIVS... 7-38
SYS.DBA_USERS .. 7-39
SYS.DUAL .. 7-40
SYS.INDEXES .. 7-41

ix

SYS.MONITOR ... 7-43
SYS.PLAN ... 7-48
SYS.PUBLIC_DEPENDENCY... 7-51
SYS.SEQUENCES ... 7-52
SYS.SESSION_ROLES... 7-53
SYS.SYSTEM_PRIVILEGE_MAP .. 7-54
SYS.TABLE_PRIVILEGE_MAP.. 7-55
SYS.TABLES ... 7-56
SYS.TBL_STATS .. 7-59
SYS.TCOL_STATS .. 7-60
SYS.TINDEXES ... 7-61
SYS.TRANSACTION_LOG_API... 7-63
SYS.TTABLES .. 7-64
SYS.TTBL_STATS ... 7-67
SYS.USER_ARGUMENTS .. 7-68
SYS.USER_COL_PRIVS .. 7-69
SYS.USER_DEPENDENCIES ... 7-70
SYS.USER_ERRORS... 7-71
SYS.USER_IDENTIFIERS ... 7-72
SYS.USER_OBJECTS ... 7-73
SYS.USER_OBJECT_SIZE... 7-74
SYS.USER_PLSQL_OBJECT_SETTINGS .. 7-75
SYS.USER_PROCEDURES ... 7-76
SYS.USER_SOURCE .. 7-77
SYS.USER_STORED_SETTINGS ... 7-78
SYS.USER_SYS_PRIVS ... 7-79
SYS.USER_TAB_PRIVS ... 7-80
SYS.USER_USERS .. 7-81
SYS.VIEWS... 7-82
SYS.XLASUBSCRIPTIONS... 7-83
TTREP.REPELEMENTS ... 7-84
TTREP.REPLICATIONS... 7-87
TTREP.REPNETWORK.. 7-88
TTREP.REPPEERS ... 7-89
TTREP.REPSTORES ... 7-91
TTREP.REPSUBSCRIPTIONS .. 7-92
TTREP.REPTABLES .. 7-93
TTREP.TTSTORES.. 7-96

8 Reserved Words

Index

x

xi

Preface

Oracle TimesTen In-Memory Database is a high-performance, in-memory data
manager that supports the ODBC (Open DataBase Connectivity) and JDBC (Java
DataBase Connectivity) interfaces.

Audience
This document is intended for application developers who use and administer
TimesTen. It provides a reference for TimesTen SQL statements, expressions, and
functions, including TimesTen SQL extensions. It also describes data types and system
tables.

To work with this guide, you should understand how database systems work. You
should also have knowledge of SQL (Structured Query Language).

Related documents
TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network:

http://www.oracle.com/technology/documentation/timesten_doc.html

Conventions
TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows refers to Windows
2000, Windows XP and Windows Server 2003. The term UNIX refers to Solaris, Linux,
HP-UX and AIX.

This document uses the following text conventions:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

TimesTen documentation uses these variables to identify path, file and user names:

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

italic monospace Italic monospace type indicates a variable in a code example that you
must replace. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

[] Square brackets indicate that an item in a command line is optional.

{ } Curly braces indicated that you must choose one of the items separated
by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the UNIX root prompt.

Convention Meaning

install_dir The path that represents the directory where the current release of
TimesTen is installed.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at install time with a unique
alphanumeric instance name. This name appears in the install path.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit or 64-bit
operating system.

release or rr Three numbers that represent the first three numbers of the TimesTen
release number, with or without a dot. For example, 1121 or 11.2.1
represents TimesTen Release 11.2.1.

jdk_version Two digits that represent the version number of the major JDK release.
Specifically, 14 represent JDK 1.4; 5 represents JDK 5.

DSN The data source name.

Convention Meaning

xiii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Technical support
For information about obtaining technical support for TimesTen products, go to the
following Web address:

http://www.oracle.com/support/contact.html

xiv

xv

What’s New in SQL

This section lists new features for Release 11.2.1 that are documented in this reference
and provides cross-references to additional information.

Access Control
■ New system privileges and object privileges. See Chapter 6, "Privileges". Also see

"Required privileges" for each SQL statement in Chapter 5, "SQL Statements".

■ New system views:

– SYS.DBA_SYS_PRIVS and SYS.USER_SYS_PRIVS

– SYS.ALL_TAB_PRIVS, SYS.DBA_TAB_PRIVS and SYS.USER_TAB_PRIVS

– SYS.ALL_USERS, SYS.DBA_USERS and SYS.USER_USERS

– SYS.ALL_COL_PRIVS, SYS.DBA_COL_PRIVS and SYS.USER_COL_PRIVS

– SYS.SESSION_ROLES

■ New syntax for ALTER USER, CREATE USER, DROP USER, GRANT and
REVOKE statements

■ Revised reserved words. See Chapter 8, "Reserved Words".

PL/SQL support
The ALTER SESSION statement has been enhanced.

These statements are new:

■ ALTER FUNCTION

■ ALTER PACKAGE

■ ALTER PROCEDURE

■ CREATE FUNCTION

■ CREATE PACKAGE

■ CREATE PACKAGE BODY

■ CREATE PROCEDURE

■ DROP FUNCTION

■ DROP PACKAGE [BODY]

■ DROP PROCEDURE

xvi

These system tables and system views are new:

■ SYS.ALL_ARGUMENTS, SYS.DBA_ARGUMENTS and SYS.USER_ARGUMENTS

■ SYS.ALL_DEPENDENCIES, SYS.DBA_DEPENDENCIES and SYS.USER_
DEPENDENCIES

■ SYS.ALL_ERRORS, SYS.DBA_ERRORS and SYS.USER_ERRORS

■ SYS.ALL_IDENTIFIERS, SYS.DBA_IDENTIFIERS and SYS.USER_IDENTIFIERS

■ SYS.ALL_OBJECTS, SYS.DBA_OBJECTS and SYS.USER_OBJECTS

■ SYS.ALL_PLSQL_OBJECT_SETTINGS, SYS.DBA_PLSQL_OBJECT_SETTINGS
and SYS.USER_PLSQL_OBJECT_SETTINGS

■ SYS.ALL_PROCEDURES, SYS.DBA_PROCEDURES and SYS.USER_
PROCEDURES

■ SYS.ALL_SOURCE, SYS.DBA_SOURCE and SYS.USER_SOURCE

■ SYS.ALL_STORED_SETTINGS, SYS.DBA_STORED_SETTINGS and SYS.USER_
STORED_SETTINGS

■ SYS.DBA_OBJECT_SIZE and SYS.USER_OBJECT_SIZE

■ SYS.PUBLIC_DEPENDENCY

These SQL functions are new:

■ SYS_CONTEXT

■ UID

Oracle In-Memory Database Cache (IMDB Cache)
These IMDB Cache features are new:

■ Dynamic cache groups - In a dynamic cache group, new cache instances are
loaded manually into the TimesTen cache tables using a load operation, or on
demand using a dynamic load operation. See:

– "CREATE CACHE GROUP" on page 5-49

– "LOAD CACHE GROUP" on page 5-143

– "REFRESH CACHE GROUP" on page 5-150

– "UNLOAD CACHE GROUP" on page 5-176

■ Cache grid - A cache grid is a collection of TimesTen databases that collectively
manage the application data using the relational data model. A cache grid consists
of one or more grid members each backed by a TimesTen database. See "CREATE
CACHE GROUP" on page 5-49.

■ Global cache groups - In a global cache group, data in the cache tables are shared
among TimesTen databases within a cache grid. See "CREATE CACHE GROUP"
on page 5-49.

Asynchronous materialized views
Materialized views can be refreshed asynchronously. The CREATE MATERIALIZED
VIEW statement has been enhanced. These statements are new:

■ CREATE MATERIALIZED VIEW LOG

xvii

■ DROP MATERIALIZED VIEW LOG

■ REFRESH MATERIALIZED VIEW

RETURNING ... INTO clause
The DELETE, INSERT and UPDATE statements have been enhanced with the
RETURNING...INTO clause.

ROWID data type
The ROWID data type has been implemented. See "ROWID data type" on page 1-21.

Duplicate parameter names
TimesTen offers Oracle-style behavior for duplicated parameter names. See "Duplicate
parameter names" on page 2-3.

Bitmap indexes
You can create bitmap indexes. See "CREATE INDEX" on page 5-65.

Set operators in subqueries
Set operators are allowed in subqueries. See "Subqueries" on page 3-6.

Enhanced ":" parameter markers
":" parameter markers have been enhanced. See "Dynamic parameters" on page 2-2.

Multiline C-style comments
You can use multiline C-style comments in SQL statements. See "Comments within
SQL statements" on page 5-1.

View and sequence names
A view and a sequence cannot have the same name. See "CREATE VIEW" on
page 5-116 and "CREATE SEQUENCE" on page 5-96.

xviii

1

Data Types 1-1

1Data Types

A data type defines a set of values. A reference to a data type specifies the set of values
that can occur in a given context.

A data type is associated with each value retrieved from a table or computed in an
expression and each constant.

TimesTen follows the ODBC standard for type conversion. A discussion of this
standard is not included in this guide. See Appendix D either in the Microsoft ODBC
2.0 Programmer’s Reference and SDK Guide or the Microsoft ODBC 3.0 Developer’s Kit and
Programmer’s Reference for more information.

If you are using IMDB Cache, see "Mappings between Oracle and TimesTen data
types" in Oracle In-Memory Database Cache User's Guide. This section compares valid
data types for creating cache group columns, as well as type conversions for
passthrough queries.

Type specifications
TimesTen supports the data types in Table 1–1 in the default Oracle type mode. The
type mode is a data store creation attribute. TypeMode=0 indicates Oracle type mode.
TypeMode=1 indicates TimesTen mode.

For more information on types modes, see "TypeMode" in Oracle TimesTen In-Memory
Database Reference.

Table 1–1 Data types supported in Oracle type mode

Data type Description

BINARY (n) Fixed-length binary value of n bytes. Legal values for n range from
1 to 8300.

BINARY data is padded to the maximum column size with trailing
zeroes.

Alternatively, specify TT_BINARY (n).

BINARY_DOUBLE 64-bit floating-point number. BINARY_DOUBLE is a
double-precision native floating point number. Supports +Inf,

-Inf and Nan values. BINARY_DOUBLE is an approximate
numeric value consisting of an exponent and mantissa. You can
use Exponential or E-notation. BINARY_DOUBLE has binary
precision 53.

Minimum positive finite value: 2.22507485850720E-308

Maximum positive finite value: 1.79769313486231E+308

Type specifications

1-2 Oracle TimesTen In-Memory Database SQL Reference

BINARY_FLOAT 32-bit floating-point number. BINARY_FLOAT is a single-precision
native floating-point type. Supports +Inf, -Inf and NaN values.
BINARY_FLOAT is an approximate numeric value consisting of an
exponent and mantissa. You can use Exponential or E-notation.
BINARY_FLOAT has binary precision 24.

Minimum positive finite value: 1.17549E-38F

Maximum positive finite value: 3.40282E+38F

CHAR[ACTER] [(n [BYTE|CHAR])] Fixed-length character string of length n bytes or characters.
Default is 1 byte.

BYTE indicates that the column has byte length semantics. Legal
values for n range from a minimum of 1 byte to a maximum 8300
bytes.

CHAR indicates that the column has character length semantics.
The minimum CHAR length is 1 character. The maximum CHAR
length depends on how many characters fit in 8300 bytes. This is
determined by the database character set in use. For character set
AL32UTF8, up to four bytes per character may be needed, so the
CHAR length limit ranges from 2075 to 8300 depending on the
character set.

A zero-length string is interpreted as NULL.

CHAR data is padded to the maximum column size with trailing
blanks. Blank-padded comparison semantics are used.

Alternatively, specify ORA_CHAR[(n [BYTE|CHAR])].

DATE Stores date and time information: century, year, month, date, hour,
minute and second. Format is:

YYYY-MM-DD HHMMSS.

Valid date range is from January 1, 4712 BC to December 31, 9999
AD.

There are no fractional seconds.

Alternatively, specify ORA_DATE.

INTERVAL [+/-] IntervalQualifier TimesTen partially supports INTERVAL types, expressed with the
type INTERVAL and an IntervalQualifier. An IntervalQualifier can
only specify a single field type with no precision. The default
leading precision is 8 digits for all INTERVAL types. The single
field type can be: YEAR, MONTH, DAY, HOUR, MINUTE or
SECOND. Currently, INTERVAL type can be specified only with a
constant.

NCHAR[(n)] Fixed-length string of length n two-byte Unicode characters.

The number of bytes required is 2* n where n is the specified
number of characters. NCHAR character limits are 1/2 the byte
limits so the maximum size is 4150.

A zero-length string is interpreted as NULL.

NCHAR data is padded to the maximum column size with
U+0020 SPACE. Blank-padded comparison semantics are used.

Alternatively, specify ORA_NCHAR[(n)].

Table 1–1 (Cont.) Data types supported in Oracle type mode

Data type Description

Type specifications

Data Types 1-3

NUMBER [(precision [,scale])] Number having precision and scale. The precision ranges from 1 to
38 decimal. The scale ranges from -84 to 127. Both precision and
scale are optional.

If you do not specify a precision or a scale, TimesTen assumes the
maximum precision of 38 and flexible scale.

NUMBER supports scale > precision and negative scale.

NUMBER stores zero as well as positive and negative fixed
numbers with absolute values from 1.0 x 10-130 to (but not
including) 1.0 x 10126. If you specify an arithmetic expression
whose value has an absolute value greater than or equal to 1.0 x
10126, then TimesTen returns an error.

NVARCHAR2(n) Variable-length string of n two-byte Unicode characters.

The number of bytes required is 2* n where n is the specified
number of characters. NVARCHAR2 character limits are 1/2 the
byte limits so the maximum size is 2,097,152 (221). You must
specify n.

A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used.

Alternatively, specify ORA_NVARCHAR2(n).

ROWID An 18-byte character string that represents the address of a table
row or materialized view row.

Specify a literal ROWID value as a CHAR constant enclosed in
single quotes.

TIME A time of day between 00:00:00 (12 midnight) and 23:59:59
(11:59:59 pm), inclusive. The format is: HH:MI:SS.

Alternatively, specify TT_TIME.

TIMESTAMP

[(fractional_seconds_precision)]

Stores year, month, and day values of the date data type plus hour,
minute, and second values of time. Fractional_seconds_precision is
the number of digits in the fractional part of the seconds field.
Valid date range is from January 1, 4712 BC to December 31, 9999
AD.

TT_TIMESTAMP has a smaller storage size than TIMESTAMP. TT_
TIMESTAMP is faster than TIMESTAMP because TT_TIMESTAMP
is an 8 byte integer containing the number of microseconds since
January 1, 1754. Comparisons are very fast. TIMESTAMP has a
larger range than TT_TIMESTAMP in that TIMESTAMP can store
datetime data as far back as 4712 BC. TIMESTAMP also supports
up to 9 digits of fractional second precision whereas TT_
TIMESTAMP supports 6 digits of fractional second precision.

The fractional seconds precision range is 0 to 9. The default is 6.
Format is:

YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]

Alternatively, specify ORA_TIMESTAMP[(fractional_seconds_
precision)]

Table 1–1 (Cont.) Data types supported in Oracle type mode

Data type Description

Type specifications

1-4 Oracle TimesTen In-Memory Database SQL Reference

TT_BIGIN A signed 8-byte integer in the range

-9,223,372,036,854,775,808 -(263) to

 9,223,372,036,854,775,807 (263 - 1).

Use TT_BIGINT rather than the NUMBER data type. TT_BIGINT
is more compact and offers faster performance than the NUMBER
type. If you need to store greater than 19 digit integers, use
NUMBER (p) where p > 19.

TT_DATE Stores date information: century, year, month, date. The format is
YYYY-MM-DD. MM is expressed as an integer. For example:

2006-10-28

Valid dates are between 1753-01-01 (January 1,1753) and
9999-12-31 (December 31, 9999).

TT_INT[EGER] A signed integer in the range –2,147,483,648 --(231) to 2,147,483,647
(231–1).

TT_INTEGER is a native signed integer data type. Use TT_
INTEGER rather than INTEGER. INTEGER maps to the NUMBER
data type. TT_INTEGER is more compact and offers faster
performance than the NUMBER type. If you need to store greater
than 19 digit integers, use NUMBER (p) where p > 19.

TT_SMALLINT A native signed 16 bit integer in the range –32,768 –(215) to 32,767
(215–1).

Use TT_SMALLINT rather than SMALLINT. SMALLINT maps to
the NUMBER data type.

TT_SMALLINT is more compact and offers faster performance
than the NUMBER type. If you need to store greater than 19 digit
integers, use NUMBER (p) where p > 19.

TT_TIMESTAMP A data and time between 1753-01-01 00:00:00 (January 1, 1753
midnight) and 9999-12-31 23:59:59 pm (11:59:59 pm on December
31, 9999), inclusive. Any values for the fraction not specified in full
microseconds result in a "Data Truncated" error. The format is
YYYY-MM-DD HH:MI:SS [.FFFFFF].

TT_TIMESTAMP has a smaller storage size than TIMESTAMP and
TT_TIMESTAMP is faster than TIMESTAMP because TT_
TIMESTAMP is an 8 byte integer containing the number of
microseconds since January 1, 1754. Comparisons are very fast.
TIMESTAMP has a larger range than TT_TIMESTAMP in that
TIMESTAMP can store datetime data as far back as 4712 BC.
TIMESTAMP also supports up to 9 digits of fractional second
precision whereas TT_TIMESTAMP supports 6 digits of fractional
second precision.

You can specify TT_TIMESTAMP (6).

TT_TINYINT Unsigned integer ranging from 0 to 255 (28-1).

Use TT_TINYINT rather than the NUMBER data type. TT_
TINYINT is more compact and offers faster performance than the
NUMBER type. If you need to store greater than 19 digit integers,
use NUMBER (p) where p > 19.

Since TT_TINYINT is unsigned, the negation of a TT_TINYINT is
TT_SMALLINT.

Table 1–1 (Cont.) Data types supported in Oracle type mode

Data type Description

ANSI SQL data types

Data Types 1-5

ANSI SQL data types
TimesTen supports ANSI SQL data types in Oracle type mode. These data types are
converted to TimesTen data types and the data is stored as TimesTen data types.
Table 1–2 shows how the ANSI SQL data types are mapped to TimesTen data types.

VARBINARY (n) Variable-length binary value having maximum length n bytes.
Legal values for n range from 1 to 4194304 (222).

Alternatively, specify TT_VARBINARY(n).

VARCHAR[2] (n [BYTE|CHAR]) Variable-length character string having maximum length n bytes
or characters.

BYTE indicates that the column has byte length semantics.Legal
values for n range from a minimum of 1 byte to a maximum
4194304 (222) bytes. You must specify n.

CHAR indicates that the column has character length semantics.

A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used.

Do not use the VARCHAR type. Although it is currently
synonymous with VARCHAR2, the VARCHAR type is scheduled
to be redefined.

Alternatively, specifyORA_VARCHAR2 (n [BYTE|CHAR]).

Table 1–1 (Cont.) Data types supported in Oracle type mode

Data type Description

ANSI SQL data types

1-6 Oracle TimesTen In-Memory Database SQL Reference

Table 1–2 Data type mapping: ANSI SQL to TImesTen

ANSI SQL data type TimesTen data type

CHARACTER VARYING (n [BYTE|CHAR]) or CHAR
VARYING(n[BYTE|CHAR])

VARCHAR2 (n [BYTE|CHAR])

Character semantics is supported.

DOUBLE [PRECISION] NUMBER

Floating- point number with a binary precision of 126.

Alternatively, specify FLOAT (126) or ORA_FLOAT
(126).

FLOAT [(b)] NUMBER

Floating-point number with binary precision b.
Acceptable values for b are between 1 and 126 binary
digits.

FLOAT is an exact numeric type. Use FLOAT to define a
column with a floated scale and a specified precision. A
floated scale is supported with the NUMBER type, but
you cannot specify the precision. A lower precision
requires less space, so because you can specify a
precision with FLOAT, it may be more desirable than
NUMBER. If you do not specify b, then the default
precision is 126 binary (38 decimal).

BINARY_FLOAT and BINARY_DOUBLE are inexact
numeric types and are therefore different floating types
than FLOAT. In addition, the semantics are different
between FLOAT and BINARY_FLOAT/BINARY_
DOUBLE because BINARY_FLOAT and BINARY_
DOUBLE conform to the IEEE standard.

Internally, FLOAT is implemented as type NUMBER.

Alternatively, specify ORA_FLOAT. For example:

FLOAT (24) = ORA_FLOAT (24)

FLOAT (53) = ORA_FLOAT (53)

FLOAT (n) = ORA_FLOAT (n)

INT[EGER] NUMBER (38,0)

TT_INTEGER is a native 32 bit integer type. Use TT_
INTEGER as this data type is more compact and offers
faster performance than the NUMBER type.

NATIONAL CHARACTER (n) or

NATIONAL CHAR (n)

NCHAR (n)

NATIONAL CHARACTER VARYING (n) or

NATIONAL CHAR VARYING (n) or

NCHAR VARYING (n)

NVARCHAR2 (n)

Types supported for backward compatibility in Oracle type mode

Data Types 1-7

Types supported for backward compatibility in Oracle type mode
TimesTen supports the data types shown in Table 1–3 for backward compatibility in
Oracle type mode.

For more information on types modes, see "TypeMode" in Oracle TimesTen In-Memory
Database Reference.

NUMERIC [(p[,s])] or

DEC[IMAL] [(p[,s])]

NUMBER (p,s)

Specifies a fixed-point number with precision p and
scale s. Can only be used for fixed-point numbers. If no
scale is specified, s defaults to 0.

REAL NUMBER

Floating -point number with a binary precision of 63.

Alternatively, specify

ORA_FLOAT (63) or FLOAT (63).

SMALLINT NUMBER (38,0)

TT_SMALLINT is a native signed integer data type. Use
TT_SMALLINT as this data type is more compact and
offers faster performance than the NUMBER type.

Table 1–2 (Cont.) Data type mapping: ANSI SQL to TImesTen

ANSI SQL data type TimesTen data type

Types supported for backward compatibility in Oracle type mode

1-8 Oracle TimesTen In-Memory Database SQL Reference

Table 1–3 Data types supported for backward compatibility in Oracle type mode

Data type Description

TT_CHAR [(n [BYTE|CHAR])] Fixed-length character string of length n bytes or
characters. Default is 1 byte.

BYTE indicates that the column has byte length
semantics. Legal values for n range from a minimum of
1 byte to a maximum 8300 bytes.

CHAR indicates that the column has character length
semantics. The minimum CHAR length is 1 character.
The maximum CHAR length depends on how many
characters fit in 8300 bytes. This is determined by the
database character set in use. For character set
AL32UTF8, up to four bytes per character may be
needed, so the CHAR length limit ranges from 2075 to
8300 depending on the character set.

If you insert a zero-length (empty) string into a column,
the SQL NULL value is inserted. This is true in Oracle
type mode only.

TT_CHAR data is padded to the maximum column size
with trailing blanks. Blank-padded comparison
semantics are used.

TT_DECIMAL[(p[,s])] An exact numeric value with a fixed maximum
precision (total number of digits) and scale (number of
digits to the right of the decimal point). The precision p
must be between 1 and 40. The scale must be between 0
and p. The default precision is 40 and the default scale is
0.

Use the NUMBER data type rather than TT_DECIMAL.
NUMBER offers better performance.

TimesTen type mapping

Data Types 1-9

TimesTen type mapping
The names of the data types listed in the left column of Table 1–4 are the data types
that existed in previous releases of TimesTen. If TypeMode is set to 0 (the default),
indicating Oracle type mode, then the name of the data type may be changed to a new
name in Oracle type mode. (The name of the data type in Oracle type mode is listed in
the right column.) The table illustrates the mapping of the data type in the left column
to the corresponding data type in the right column.

TT_NCHAR[(n)] Fixed-length string of n two-byte Unicode characters.

The number of bytes required is 2* n where n is the
specified number of characters. NCHAR character limits
are 1/2 the byte limits so the maximum size is 4150.

If you insert a zero-length (empty) string into a column,
the SQL NULL value is inserted. This is true in Oracle
type mode only.

TT_NCHAR data is padded to the maximum column
size with U+0020 SPACE. Blank-padded comparison
semantics are used.

TT_NVARCHAR(n) Variable-length string of n two-byte Unicode characters.

The number of bytes required is 2* n where n is the
specified number of characters. TT_NVARCHAR
character limits are 1/2 the byte limits so the maximum
size is 2,097,152 (221). You must specify n.

If you insert a zero-length (empty) string into a column,
the SQL NULL value is inserted. This is true in Oracle
type mode only.

Blank-padded comparison semantics are used.

TT_VARCHAR (n [BYTE|CHAR]) Variable-length character string having maximum
length n bytes or characters. You must specify n.

BYTE indicates that the column has byte length
semantics. Legal values for n range from a minimum of
1 byte to a maximum 4194304 (222) bytes.

CHAR indicates that the column has character length
semantics.

If you insert a zero-length (empty) string into a column,
the SQL NULL value is inserted. This is true in Oracle
type mode only.

Blank-padded comparison semantics are used.

Table 1–3 (Cont.) Data types supported for backward compatibility in Oracle type mode

Data type Description

TimesTen type mapping

1-10 Oracle TimesTen In-Memory Database SQL Reference

Table 1–4 Data type mapping: TimesTen data type to TimesTen data type in Oracle type mode

TimesTen data type TimesTen data type in Oracle type mode

BIGINT TT_BIGINT

In Oracle type mode, specify TT_BIGINT. For more information on TT_BIGINT, see
"Type specifications" on page 1-1.

BINARY (n) BINARY (n)

In Oracle type mode, the data type has the same name. For more information on
BINARY (n), see "Type specifications" on page 1-1.

CHAR[ACTER][(n)] TT_CHAR [(n [BYTE|CHAR])]

In Oracle type mode, specify TT_CHAR. Character semantics is supported. For more
information on type TT_CHAR, see "Types supported for backward compatibility in
Oracle type mode" on page 1-7.

DATE TT_DATE

In Oracle type mode, specify TT_DATE. For more information on TT_DATE, see "Type
specifications" on page 1-1.

DEC[IMAL][(p[,s])] or

NUMERIC[(p[,s])]

TT_DECIMAL[(p[,s])]

In Oracle type mode, specify TT_DECIMAL.

For more information on TT_DECIMAL, see "Types supported for backward
compatibility in Oracle type mode" on page 1-7.

DOUBLE [PRECISION]
or

FLOAT [(53)]

BINARY_DOUBLE

In Oracle type mode, specify BINARY_DOUBLE. For more information on BINARY_
DOUBLE, see "Type specifications" on page 1-1.

INT[EGER] TT_INT[EGER]

In Oracle type mode, specify TT_INTEGER. For more information on TT_INTEGER,
see "Type specifications" on page 1-1.

INTERVAL
IntervalQualifier

INTERVAL IntervalQualifier

In Oracle type mode, the data type has the same name. For more information on
INTERVAL, see "Type specifications" on page 1-1.

NCHAR [(n)] TT_NCHAR[(n)]

In Oracle type mode, specify TT_CHAR. For more information on TT_NCHAR, see
"Types supported for backward compatibility in Oracle type mode" on page 1-7.

NVARCHAR (n) TT_NVARCHAR(n)

In Oracle type mode, specify TT_NVARCHAR. For more information on TT_
NVARCHAR, see "Types supported for backward compatibility in Oracle type mode"
on page 1-7.

REAL or

FLOAT (24)

BINARY_FLOAT

In Oracle type mode, specify BINARY_FLOAT. For more information on BINARY_
FLOAT, see "Type specifications" on page 1-1.

SMALLINT TT_SMALLINT

In Oracle type mode, specify TT_SMALLINT. For more information on TT_SMALLINT,
see "Type specifications" on page 1-1.

TIME TIME

In Oracle type mode, the data type has the same name. For more information on TIME,
see "Type specifications" on page 1-1.

TIMESTAMP TT_TIMESTAMP

In Oracle type mode, specify TT_TIMESTAMP. For more information on TT_
TIMESTAMP, see "Type specifications" on page 1-1.

Character data types

Data Types 1-11

Character data types
Character data types store character (alphanumeric) data either in the database
character set or the UTF-16 format.

Character data is stored in strings with byte values. The byte values correspond to one
of the data store character sets defined when the data store is created. TimesTen
supports both single byte and multibyte character sets.

The character types are:

■ CHAR

■ NCHAR

■ VARCHAR2

■ NVARCHAR2

CHAR
The CHAR type specifies a fixed length character string. If you insert a value into a
CHAR column and the value is shorter than the defined column length, then TimesTen
blank-pads the value to the column length. If you insert a value into a CHAR column
and the value is longer than the defined length, then TimesTen returns an error.

By default, the column length is defined in bytes. Use the CHAR qualifier to define the
column length in characters. The size of a character ranges from 1 byte to 4 bytes
depending on the database character set. The BYTE and CHAR qualifiers override the
NLS_LENGTH_SEMANTICS parameter setting. For more information about NLS_
LENGTH_SEMANTICS, see "ALTER SESSION" on page 5-23 and "Setting
globalization support attributes" in Oracle TimesTen In-Memory Database Operations
Guide.

The following example creates a table. Columns are defined with type CHAR and TT_
CHAR. Blank padded comparison semantics are used for these types.

TINYINT TT_TINYINT

In Oracle type mode, specify TT_TINYINT. For more information on TT_TINYINT, see
"Type specifications" on page 1-1.

VARBINARY (n) VARBINARY (n)

In Oracle type mode, the data type has the same name. For more information on
VARBINARY (n), see "Type specifications" on page 1-1.

VARCHAR (n) TT_VARCHAR (n [BYTE|CHAR])

In Oracle type mode, specify TT_VARCHAR. Character semantics is supported. For
more information on TT_VARCHAR, see "Types supported for backward compatibility
in Oracle type mode" on page 1-7.

Note: With the CHAR type, a zero-length string is interpreted as
NULL. With the TT_CHAR type, a zero-length string is a valid
non-NULL value. Both CHAR and TT_CHAR use blank padded
comparison semantics. The TT_CHAR type is supported for backward
compatibility.

Table 1–4 (Cont.) Data type mapping: TimesTen data type to TimesTen data type in Oracle type mode

TimesTen data type TimesTen data type in Oracle type mode

Character data types

1-12 Oracle TimesTen In-Memory Database SQL Reference

Command> CREATE TABLE typedemo (name CHAR (20), nnme2 TT_CHAR (20));
Command> INSERT INTO typedemo VALUES ('SMITH ','SMITH ');
1 row inserted.
Command> DESCRIBE typedemo;
Table USER.TYPEDEMO:
Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)

1 table found.
(primary key columns are indicated with *)
Command> SELECT * FROM typedemo;
< SMITH , SMITH >
1 row found.
Command> # Expect 1 row found; blank-padded comparison semantics
Command> SELECT * FROM typedemo WHERE name = 'SMITH';
< SMITH , SMITH >
1 row found.
Command> SELECT * FROM typedemo WHERE name2 = 'SMITH';
< SMITH , SMITH >
1 row found.
Command> # Expect 0 rows; blank padded comparison semantics.
Command> SELECT * FROM typedemo WHERE name > 'SMITH';
0 rows found.
Command> SELECT * FROM typedemo WHERE name2 > 'SMITH';
0 rows found.

The following example alters table typedemo adding column name3. The column
name3 is defined with character semantics.

Command> ALTER TABLE typedemo ADD COLUMN name3 CHAR (10 CHAR);
Command> DESCRIBE typedemo;
Table USER.TYPEDEMO:
Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)

1 table found.

NCHAR
The NCHAR data type is a fixed length string of two-byte Unicode characters.
NCHAR data types are padded to the specified length with the Unicode space
character U+0020 SPACE. Blank-padded comparison semantics are used.

The following example ALTERs table typedemo adding column Name4. Data type is
NCHAR.

Command> ALTER TABLE typedemo ADD COLUMN Name4 NCHAR (10);
Command> DESCRIBE typedemo;

Table USER.TYPEDEMO:
Columns:

Note: With the NCHAR type, a zero-length string is interpreted as
NULL. With the TT_NCHAR type, a zero-length string is a valid
non-NULL value. Both NCHAR and TT_NCHAR use blank padded
comparison semantics. The TT_NCHAR type is supported for
backward compatibility.

Character data types

Data Types 1-13

NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)

1 table found.

VARCHAR2
The VARCHAR2 data type specifies a variable length character string. When you
define a VARCHAR2 column, you define the maximum number of bytes or characters.
Each value is stored exactly as you specify it. The value cannot exceed the maximum
length of the column.

You must specify the maximum length. The minimum must be at least 1 byte. Use the
CHAR qualifier to specify the maximum length in characters. For example,
VARCHAR2 (10 CHAR).

The size of a character ranges from 1 byte to 4 bytes depending on the database
character set. The BYTE and CHAR qualifiers override the NLS_LENGTH_
SEMANTICS parameter setting. For more information on NLS_LENGTH_
SEMANTICS, see "ALTER SESSION" on page 5-23 and "Setting globalization support
attributes" in Oracle TimesTen In-Memory Database Operations Guide.

The NULL value is stored as a single bit inside the tuple for each nullable field. A NOT
INLINE VARCHAR2(n) whose value is NULL takes (null bit) + 4 bytes of storage on
32-bit platforms, whereas an INLINE VARCHAR2(n) whose value is NULL takes (null
bit) + 4 bytes + n bytes of storage, or n more bytes of storage than a NOT INLINE
VARCHAR2(n) whose value is NULL. This storage principal holds for all variable
length data types: TT_VARCHAR, TT_NVARCHAR, VARCHAR2, NVARCHAR2,
VARBINARY.

The following example alters table typedemo adding columns name5 and name6.
name5 is defined with type VARCHAR2. name6 is defined with TT_VARCHAR. The
example illustrates the use of nonpadded comparison semantics with column name5
and blank-padded comparison semantics with column name6:

Command> ALTER TABLE typedemo ADD COLUMN name5 VARCHAR2 (20);
Command> ALTER TABLE typedemo ADD COLUMN name6 TT_VARCHAR (20);
Command> DESCRIBE typedemo;
Table USER.TYPEDEMO:
Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)

Note: Do not use the VARCHAR data type. Use VARCHAR2. Even
though both data types are currently synonymous, the VARCHAR
data type is scheduled to be redefined as a different data type with
different semantics.

Note: With the VARCHAR2 type, a zero-length string is interpreted
as NULL. With the TT_VARCHAR type, a zero-length string is a valid
non-NULL value. VARCHAR2 uses nonpadded comparison
semantics. TT_VARCHAR uses blank-padded comparison semantics.
The TT_VARCHAR type is supported for backward compatibility.

Character data types

1-14 Oracle TimesTen In-Memory Database SQL Reference

NAME5 VARCHAR2 (20) INLINE
NAME6 TT_VARCHAR (20) INLINE

1 table found.
(primary key columns are indicated with *)
Command> #Insert SMITH followed by 5 spaces into all columns
Command> INSERT INTO typedemo VALUES
> ('SMITH ', 'SMITH ', 'SMITH ', 'SMITH ','SMITH ', 'SMITH');
1 row inserted.
Command> # Expect 0; Nonpadded comparison semantics
Command> SELECT COUNT (*) FROM typedemo WHERE name5 = 'SMITH';
< 0 >
1 row found.
Command> # Expect 1; Blank-padded comparison semantics
Command> SELECT COUNT (*) FROM typedemo WHERE name6 = 'SMITH';
< 1 >
1 row found.
Command> # Expect 1; Nonpadded comparison semantics
Command> SELECT COUNT (*) FROM typedemo WHERE name5 > 'SMITH';
< 1 >
1 row found.
Command> # Expect 0; Blank-padded comparison semantics
Command> SELECT COUNT (*) FROM typedemo WHERE name6 > 'SMITH';
< 0 >
1 row found.

NVARCHAR2
The NVARCHAR2 data type is a variable length string of two-byte Unicode
characters. When you define an NVARCHAR2 column, you define the maximum
number of characters. Each value is stored exactly as you specify it. The value cannot
exceed the maximum length of the column. You must specify a length.

The following example alters table typedemo adding column name7. Data type is
NVARCHAR2.

Command> ALTER TABLE typedemo ADD COLUMN Nnme7 NVARCHAR2 (20);
Command> DESCRIBE typedemo;
Table USER1.TYPEDEMO:
Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)
NAME5 VARCHAR2 (20) INLINE
NAME6 TT_VARCHAR (20) INLINE
NAME7 NVARCHAR2 (20) INLINE

1 table found.

Note: With the NVARCHAR2 type, a zero-length string is
interpreted as NULL. With the TT_NVARCHAR type, a zero-length
string is a valid non-NULL value. NVARCHAR2 uses nonpadded
comparison semantics. TT_NVARCHAR uses blank-padded
comparison semantics. The TT_NVARCHAR type is supported for
backward compatibility.

Numeric data types

Data Types 1-15

Numeric data types
Numeric types store positive and negative fixed and floating-point numbers, zero,
infinity, and values that are the undefined result of an operation (NaN or "not a
number").

Exact and approximate numeric data types
TimesTen supports both exact and approximate numeric data types. Arithmetic
operations can be performed on numeric types only. Similarly, SUM and AVG
aggregates require numeric types.

The exact numeric types are:

■ NUMBER

■ TT_BIGINT

■ TT_INTEGER

■ TT_SMALLINT

■ TT_TINYINT

The approximate types are:

■ BINARY_DOUBLE

■ BINARY_FLOAT

■ FLOAT and FLOAT (n)

NUMBER
The NUMBER data type stores zero as well as positive and negative fixed numbers
with absolute values from 1.0 X 10 -130 to but not including 1.0 X 10 126. Each NUMBER
value requires from 5 to 22 bytes.

Specify a fixed- point number as NUMBER (p,s) where:

■ p is the precision or the total number of significant decimal digits, where the most
significant digit is the left-most non-zero digit and the least significant digit is the
right-most known digit.

■ s is the scale, or the number of digits from the decimal point to the least significant
digit. The scale ranges from -84 to 127.

– Positive scale is the number of significant digits to the right of the decimal
point to and including the least significant digit.

– Negative scale is the number of significant digits to the left of the decimal
point to but not including the least significant digit. For negative scale, the
least significant digit is on the left side of the decimal point, because the
number is rounded to the specified number of places to the left of the decimal
point.

Scale can be greater than precision. For example, in the case of e notation. When scale
is greater than precision, the precision specifies the maximum number of significant
digits to the right of the decimal point. For example, if you define the column as type
NUMBER (4,5), and you insert .000127 into the column, the value is stored as .00013. A
zero is required for the first digit after the decimal point.TimesTen rounds values after
the fifth digit to the right of the decimal point.

Numeric data types

1-16 Oracle TimesTen In-Memory Database SQL Reference

If a value exceeds the precision, then TimesTen returns an error. If a value exceeds the
scale, then TimesTen rounds the value.

NUMBER (p) represents a fixed-point number with precision p and scale 0 and is
equivalent to NUMBER (p,0).

Specify a floating-point number as NUMBER. If you do not specify precision and
scale, TimesTen uses the maximum precision and scale.

This example alters table numerics by adding columns col6, col7, col8 and col9
defined with the NUMBER data type and specified with different precisions and
scales.

Command> ALTER TABLE numerics ADD col6 NUMBER;
Command> ALTER TABLE numerics ADD col7 NUMBER (4,2);
Command> ALTER TABLE numerics ADD col8 NUMBER (4,-2);
Command> ALTER TABLE numerics ADD col8 NUMBER (2,4);
Command> ALTER TABLE numerics ADD col9 NUMBER (2,4);
Command> DESCRIBE numerics;
Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER
COL4 TT_INTEGER
COL5 TT_BIGINT
COL6 NUMBER
COL7 NUMBER (4,2)
COL8 NUMBER (4,-2)
COL9 NUMBER (2,4)

1 table found.
(primary key columns are indicated with *)

This example creates table numbercombo and defines columns with the NUMBER
data type using different precisions and scales. The value 123.89 is inserted into the
columns.

Command> CREATE TABLE numbercombo (col1 NUMBER, col2 NUMBER (3), col3 NUMBER
(6,2), col4 NUMBER (6,1), col5 NUMBER (6,-2));
Command> DESCRIBE numbercombo;
Table USER1.NUMBERCOMBO:
Columns:
COL1 NUMBER
COL2 NUMBER (3)
COL3 NUMBER (6,2)
COL4 NUMBER (6,1)
COL5 NUMBER (6,-2)

1 table found.
(primary key columns are indicated with *)
Command> INSERT INTO numbercombo VALUES (123.89,123.89,123.89,123.89,123.89);
1 row inserted.
Command> VERTICAL ON;
Command> SELECT * FROM numbercombo;
COL1: 123.89
COL2: 124
COL3: 123.89
COL4: 123.9
COL5: 100

1 row found.

Numeric data types

Data Types 1-17

This example creates a table and defines a column with data type NUMBER (4,2). An
attempt to insert a value of 123.89 results in an overflow error.

Command> CREATE TABLE invnumbervalue (col6 NUMBER (4,2));
Command> INSERT INTO invnumbervalue VALUES (123.89);
 2923: Number type value overflow
The command failed.

This example creates a table and defines columns with the NUMBER data type using a
scale that is greater than the precision. Values are inserted into the columns.

Command> CREATE TABLE numbercombo2 (col1 NUMBER (4,5), col2 NUMBER (4,5), col3
NUMBER (4,5), col4 NUMBER (2,7), col5 NUMBER (2,7), col6 NUMBER (2,5), col7 NUMBER
(2,5));
Command> INSERT INTO numbercombo2 VALUES (.01234, .00012, .000127, .0000012,
.00000123, 1.2e-4, 1.2e-5);
1 row inserted.
Command> DESCRIBE numbercombo2;
Table USER1.NUMBERCOMBO2:
Columns:
COL1 NUMBER (4,5)
COL2 NUMBER (4,5)
COL3 NUMBER (4,5)
COL4 NUMBER (2,7)
COL5 NUMBER (2,7)
COL6 NUMBER (2,5)
COL7 NUMBER (2,5)

1 table found.

(primary key columns are indicated with *)
Command> SELECT * FROM numbercombo2;
COL1: .01234
COL2: .00012
COL3: .00013
COL4: .0000012
COL5: .0000012
COL6: .00012
COL7: .00001

1 row found.

TT_BIGINT
The TT_BIGINT data type is a signed integer that ranges from
-9,223,372,036,854,775,808 (-2 63) to 9,223,372,036,854,775,807 (263 -1). It requires 8 bytes
of storage and thus is more compact than the NUMBER data type. It also has better
performance than the NUMBER data type. You cannot specify BIGINT.

This example alters table numerics and attempts to add col5 with a data type of
BIGINT. TimesTen generates an error. A second ALTER TABLE successfully adds col5
with a data type of TT_BIGINT.

Command> ALTER TABLE numerics ADD COLUMN col5 BIGINT;
 3300: BIGINT is not a valid type name; use TT_BIGINT instead
The command failed.
Command> ALTER TABLE numerics ADD COLUMN col5 TT_BIGINT;
Command> DESCRIBE numerics;
Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER

Numeric data types

1-18 Oracle TimesTen In-Memory Database SQL Reference

COL4 TT_INTEGER
COL5 TT_BIGINT

1 table found.
(primary key columns are indicated with *)

TT_INTEGER
The TT_INTEGER data type is a signed integer that ranges from -2,147,483,648 (-2 31)
to 2,147,483,647 (231 -1). It requires 4 bytes of storage and thus is more compact than
the NUMBER data type. It also has better performance than the NUMBER data type.
You can specify TT_INT for TT_INTEGER. If you specify either INTEGER or INT,
these types are mapped to NUMBER (38).

The example alters the table numerics and adds col3 with a data type of INT.
Describing the table shows that the data type is NUMBER (38). col3 is dropped. A
second ALTER TABLE adds col2 with a data type of INTEGER. Describing the table
shows that the data type is NUMBER (38). col3 is dropped. col3 and col4 are then
added with a data type of TT_INTEGER and TT_INT. Describing the table shows the
data types are TT_INTEGER.

Command> ALTER TABLE numerics ADD col3 INT;
Command> DESCRIBE numerics;
Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 NUMBER (38)

1 table found.
(primary key columns are indicated with *)
Command> ALTER TABLE numerics DROP col3;
Command> ALTER TABLE numerics ADD col3 INTEGER;
Command> DESCRIBE numerics;
Table USER1.NUMERICS:
Columns:

COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 NUMBER (38)

1 table found.
(primary key columns are indicated with *)
Command> ALTER TABLE numerics DROP col3;
Command> ALTER TABLE numerics ADD COLUMN col3 TT_INTEGER;
Command> DESCRIBE numerics;
Table USER1.NUMERICS:
Columns:

COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER

1 table found.
(primary key columns are indicated with *)
Command> ALTER TABLE numerics ADD col4 TT_INT;
Command> DESCRIBE numerics;
Table USER1.NUMERICS:
Columns:

COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER
COL4 TT_INTEGER

1 table found.
(primary key columns are indicated with *)

Numeric data types

Data Types 1-19

TT_SMALLINT
The TT_SMALLINT data type is a signed integer that ranges from -32,768 (-215) to
32,767 (215 - 1). It requires 2 bytes of storage and thus is more compact than the
NUMBER data type. It also has better performance than the NUMBER data type. You
can specify the data type SMALLINT, but it maps to NUMBER (38).

The example alters the table numerics and adds col2 with a data type of
SMALLINT. Describing the table shows that the data type is NUMBER (38). col2 is
dropped. A second ALTER TABLE adds Col2 with a data type of TT_SMALLINT.

Command> ALTER TABLE numerics ADD COLUMN col2 SMALLINT;
Command> DESCRIBE Numerics;
Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 NUMBER (38)

1 table found.
(primary key columns are indicated with *)
Command> ALTER TABLE numerics DROP COLUMN col2;
Command> ALTER TABLE numerics ADD COLUMN col2 TT_SMALLINT;
Command> DESCRIBE NUMERICS;
Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT

1 table found.
(primary key columns are indicated with *)

TT_TINYINT
The TT_TINYINT data type is an unsigned integer that ranges from 0 to 255 (28 -1). It
requires 1 byte of storage and thus is more compact than the NUMBER data type. It
also has better performance than the NUMBER data type. The data type of a negative
TT_TINYINT is TT_SMALLINT. You cannot specify TINYINT.

The example first attempts to create a table named numerics that defines a column
named col1 with data type TINYINT. TimesTen returns an error. The column is
redefined with data type TT_TINYINT.

Command> CREATE TABLE numerics (col1 TINYINT);
 3300: TINYINT is not a valid type name; use TT_TINYINT instead
The command failed.
Command> CREATE TABLE numerics (col1 TT_TINYINT);
Command> DESCRIBE numerics;
Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT

1 table found.
(primary key columns are indicated with *)

Floating-point numbers
Floating-point numbers can have a decimal point or can have no decimal point. An
exponent may be used to increase the range (for example, 1.2 e-20).

Floating-point numbers do not have a scale because the number of digits that can
appear after the decimal point is not restricted.

Binary floating-point numbers are stored using binary precision (the digits 0 and 1).
For the NUMBER data type, values are stored using decimal precision (the digits 0
through 9).

BINARY and VARBINARY data types

1-20 Oracle TimesTen In-Memory Database SQL Reference

Literal values that are within the range and precision supported by NUMBER are
stored as NUMBER because literals are expressed using decimal precision.

BINARY_DOUBLE BINARY_DOUBLE is a 64-bit double- precision floating- point
number.

Both BINARY_FLOAT and BINARY_DOUBLE support the special values Inf, -Inf and
NaN (not a number) and conform to the IEEE standard.

Floating-point number limits:

■ BINARY_FLOAT

– Minimum positive finite value: 1.17549E-38F

– Maximum positive finite value: 3.40282E+38F

■ BINARY_DOUBLE

– Minimum positive finite value: 2.22507485850720E-308

– Maximum positive finite value: 1.79769313486231E+308

This example creates a table and defines two columns with the BINARY_FLOAT and
BINARY_DOUBLE data types.

Command> CREATE TABLE BfBd (Col1 BINARY_FLOAT, Col2 BINARY_DOUBLE);
Command> DESCRIBE BfBd;
Table UISER1.BFBD:
Columns:
COL1 BINARY_FLOAT
COL2 BINARY_DOUBLE

1 table found.
(primary key columns are indicated with *)

BINARY_FLOAT BINARY_FLOAT is a 32-bit single- precision floating -point number.

FLOAT and FLOAT (n) TimesTen also supports the ANSI type FLOAT. FLOAT is an exact
numeric type and is implemented as the NUMBER type. The number n indicates the
number of bits of precision the value can store. The value ranges from 1 to 126. To
convert from binary precision to decimal precision, multiply n by 0.30103. To convert
from decimal precision to binary precision, multiple the decimal precision by 3.32193.
The maximum 126 digits of binary precision is equivalent to approximately 38 digits of
decimal precision.

BINARY and VARBINARY data types
The BINARY data type is a fixed-length binary value with a length of n bytes. The
value of n ranges from 1 to 8300 bytes. The BINARY data type requires n bytes of
storage. Data is padded to the maximum column size with trailing zeros. Zero padded
comparison semantics are used.

The VARBINARY data type is a variable-length binary value having a maximum
length of n bytes. The value of n ranges from 1 to 4,194,304 (222) bytes.

The example creates a table and defines 2 columns. col1 is defined with data type
BINARY and col2 is defined with data type VARBINARY.

Command> CREATE TABLE bvar (col1 BINARY (10), col2 VARBINARY (10));
Command> DESCRIBE bvar;
Table USER1.BVAR:
Columns:

ROWID data type

Data Types 1-21

COL1 BINARY (10)
COL2 VARBINARY (10) INLINE

1 table found.
(primary key columns are indicated with *)

Numeric precedence
The result type of an expression is determined by the operand with the highest type
precedence. For example, the sum of TT_INTEGER and BINARY_FLOAT types results
in type BINARY_FLOAT because BINARY_FLOAT has higher numeric precedence
than TT_INTEGER. Similarly, the product of NUMBER and BINARY_DOUBLE types
result in type BINARY_DOUBLE because BINARY_DOUBLE has higher precedence
than NUMBER.

The numeric precedence order is as follows (highest to lowest):

■ BINARY_DOUBLE

■ BINARY_FLOAT

■ NUMBER

■ TT_BIGINT

■ TT_INTEGER

■ TT_SMALLINT

■ TT_TINYINT

ROWID data type
The address of a row in a table or materialized view is called a rowid. The rowid data
type is ROWID. You can examine a rowid by querying the ROWID pseudocolumn. See
"ROWID specification" on page 3-1.

 Specify literal ROWID values in SQL statements as constants enclosed in single
quotes. For example:

Command> SELECT ROWID, last_name
 > FROM employees
 > WHERE ROWID='BMUFVUAAABTAAAAFi8';
< BMUFVUAAABTAAAAFi8, Hartstein >
1 row found.

The ROWID data type can be used as follows:

■ As the data type for a table column or materialized view column

■ In these expressions:

– Literals

– Comparisons: <, <=, >, >=, BETWEEN

– CASE

– CAST

– COALESCE

– COUNT

– DECODE

Datetime data types

1-22 Oracle TimesTen In-Memory Database SQL Reference

– GREATEST

– IN

– IS NULL

– LEAST

– MAX

– MIN

– NVL

– TO_CHAR

– TT_HASH

■ In ORDER BY and GROUP BY clauses

■ In INSERT...SELECT statements. Column col1 has been defined with the ROWID
data type for these examples:

INSERT INTO t2(col1) SELECT ROWID FROM t1;
INSERT INTO t2(col1) SELECT TO_CHAR(ROWID) FROM t1;
INSERT INTO t2(col1) SELECT CAST(ROWID, CHAR(18)) FROM t1;
INSERT INTO t2(col1) SELECT CAST(ROWID, CHAR(18)) FROM t1;

Implicit type conversions are supported for assigning values and comparison
operations between ROWID and CHAR or ROWID and VARCHAR2 data.

When CHAR, VARCHAR2 and ROWID operands are combined in CASE, COALESCE,
DECODE or NVL expressions, the result data type is ROWID. Expressions with CHAR
and VARCHAR2 values are converted to ROWID values to evaluate the expression.

To use ROWID values with string functions such as CONCAT, the application must
convert ROWID values explicitly to CHAR values using the TO_CHAR function.

Datetime data types
The datetime data types are:

■ DATE

■ TIME

■ TIMESTAMP

■ TT_DATE

■ TT_TIMESTAMP

DATE
The format of a DATE value is YYYY-MM-DD HH:MI:SS and ranges from -4712-01-01
(January 1, 4712 BC) to 9999-12-31 (December 31, 9999 AD). There are no fractional
seconds. The DATE type requires 7 bytes of storage.

TimesTen does not support user-specified NLS_DATE_FORMAT settings. The SQL
TO_CHAR and TO_DATE functions can be used to specify other formats.

TIME
The format of a TIME value is HH:MI:SS and ranges from 00:00:00 (12:00:00 AM to
23:59:59 (11:59:59 PM). The TIME data type requires 8 bytes of storage.

TimesTen intervals

Data Types 1-23

TIMESTAMP
The format of a TIMESTAMP value is YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]. The
fractional seconds precision range is 0 to 9. The default is 6. The date range is from
-4712-01-01 (January 1, 4712 BC) to 9999-12-31 (December 31, 9999 AD). The
TIMESTAMP type requires 12 bytes of storage. The TIMESTAMP type has a larger
date range than the TT_TIMESTAMP and supports more precision than the TT_
TIMESTAMP.

TimesTen does not support user-specified NLS_TIMESTAMP_FORMAT settings. The
SQL TO_CHAR and TO_DATE functions can be used to specify other formats.

TT_DATE
The format of a TT_DATE value is YYYY-MM-DD and ranges from 1753-01-01
(January 1, 1753) to 9999-12-31 (December 31, 9999 AD). The TT_DATE data type
requires 4 bytes of storage.

TT_TIMESTAMP
The format of a TT_TIMESTAMP value is YYYY-MM-DD HH:MI:SS [.FFFFFF]. The
fractional seconds precision is 6. The range is from 1753-01-01 00:00:00 (January 1, 1753
midnight) to 9999-12-31 23:59:59 (December 31, 9999 11:59:59 PM). The TT_
TIMESTAMP type requires 8 bytes of storage. TT_TIMESTAMP is faster than the
TIMESTAMP data type and has a smaller storage size than the TIMESTAMP type.

TimesTen intervals
This section includes the following topics:

■ Using INTERVAL data types

■ Using DATE and TIME data types

■ Handling timezone conversions

■ Datetime and interval data types in arithmetic operations

Using INTERVAL data types
If you are using TimesTen type mode, for information on INTERVAL, refer to
documentation from previous releases of TimesTen.

TimesTen supports interval type only in a constant specification and intermediate
expression result. Interval type can not be the final result. Columns cannot be defined
with an INTERVAL type. See "Type specifications" on page 1-1.

You can specify a single-field interval literal in an expression, but you cannot specify a
complete expression that returns an interval data type.

TimesTen supports interval literals of the form:

INTERVAL [+\-] CharString IntervalQualifier

Using DATE and TIME data types
This section shows some DATE, TIME and TIMESTAMP data type examples:

To create a table named sample that contains both a column named dcol with the
type DATE and a column named tcol with the type TIME, use:

TimesTen intervals

1-24 Oracle TimesTen In-Memory Database SQL Reference

CREATE TABLE sample (tcol TIME, dcol DATE);

To insert DATE and TIME values into the sample table, use:

INSERT INTO sample VALUES (TIME '12:00:00', DATE '1998-10-28');

To select all rows in the sample table that are between noon and 4:00 p.m. on October
29, 1998, use:

SELECT * FROM sample
WHERE dcol = DATE '1998-10-29'
AND tcol BETWEEN TIME '12:00:00' AND TIME '16:00:00';

To create a table named sample2 that contains a column named tscol with the type
TIMESTAMP and then select all rows in the table that are between noon and 4:00 p.m.
on October 29, 1998, use the statements:

CREATE TABLE sample2 (tscol TIMESTAMP);
INSERT INTO sample2 VALUES (TIMESTAMP '1998-10-28 12:00:00');
SELECT * FROM sample2
WHERE tscol
BETWEEN TIMESTAMP '1998-10-29 12:00:00'
AND '1998-10-29 16:00:00';

Handling timezone conversions
TimesTen does not support TIMEZONE. TIME and TIMESTAMP data type values are
stored without making any adjustment for time difference. Applications must assume
one time zone and convert TIME and TIMESTAMP to that time zone before sending
values to the database. For example, an application can assume its timezone to be
Pacific Standard Time. If the application is using TIME and TIMESTAMP values from
the Pacific Daylight Time or Eastern Daylight/Standard Time, the application must
convert TIME and TIMESTAMP to Pacific Standard Time.

Datetime and interval data types in arithmetic operations
If you are using TimesTen type mode, see documentation from previous releases of
TimesTen for information about datetime and interval types in arithmetic operations.

Datetime refers to DATE, TIME, and TIMESTAMP data types. Date and time arithmetic
is supported with the following syntax:

■ TimeVal1 - TimeVal2 or TimestampVal1 - TimestampVal2 or DateVal1 - DateVal2
returns the difference as an interval day to second.

■ TT_DateVal1 - TT_DateVal2 returns the number of days difference as an integer.

■ DateTimeVal {+|-} IntervalVal

■ IntervalVal + DateTimeVal

Note: TimesTen allows both literal and string formats of the TIME,
DATE and TIMESTAMP types. For example, timestring
('12:00:00') and timeliteral (TIME '16:00:00') are both
valid ways to specify a TIME value. TimesTen reads the first value as
CHAR type and then later converts it to TIME type as needed.
TimesTen reads the second value as TIME. The examples above use
the literal format. Any values for the fraction not specified in full
microseconds result in a "Data truncated" error.

TimesTen intervals

Data Types 1-25

■ IntervalVal1 {+|-} IntervalVal2

■ IntervalVal {*|/} NumericVal

■ NumericVal * IntervalVal

The INTERVAL data type cannot be the final result of a complete expression. The
EXTRACT function must be used to extract the desired component of this interval
result.

The following table lists the data type that results from each operation:

SELECT tt_date1 - tt_date2 FROM t1;
SELECT EXTRACT(DAY FROM timestamp1-timestamp2) FROM t1;
SELECT * FROM t1 WHERE timestamp1 - timestamp2 = NUMTODSINTERVAL(10, 'DAY');
SELECT SYSDATE + NUMTODSINTERVAL(20,'SECOND') FROM dual;
SELECT EXTRACT (SECOND FROM timestamp1-timestamp2) FROM dual;
/* select the microsecond difference between two timestamp values d1 and d2 */
SELECT 1000000*(EXTRACT(DAY FROM d1-d2)*24*3600+
EXTRACT(HOUR FROM d1-d2)*3600+
EXTRACT(MINUTE FROM d1-d2)*60+EXTRACT(SECOND FROM d1-d2)) FROM d1;

This example inserts timestamp values into 2 columns and then subtracts the two
values using the EXTRACT function:

Command> CREATE TABLE ts (id TIMESTAMP, id2 TIMESTAMP);
Command> INSERT INTO ts VALUES (TIMESTAMP '2007-01-20 12:45:23', TIMESTAMP
'2006-12-25 17:34:22');
1 row inserted.
Command> SELECT EXTRACT (DAY FROM id - id2) FROM ts;
< 25 >
1 row found.

The following queries return errors. You cannot select an interval result:

SELECT TIMESTAMP1 -TIMESTAMP2 FROM t1;
SELECT DATE1 - DATE2 FROM t1;;

You cannot compare an INTERVAL YEAR TO MONTH with an INTERVAL DAY TO
SECOND:

SELECT * FROM t1 WHERE timestamp1 - timestamp2 = NUMTOYMINTERVAL(10, 'YEAR');

You cannot compare an INTERVAL DAY TO SECOND with an INTERVAL DAY:

Operand 1 Operator Operand 2 Result type

TIME |

DATE |

TIMETAMP

- TIME|

DATE |

TIMESTAMP

INTERVAL DAY TO
SECOND

TT_DATE - TT_DATE TT_BIGINT (number
of days)

datetime + or - INTERVAL datetime

INTERVAL + datetime datetime

INTERVAL + or - INTERVAL INTERVAL

INTERVAL * or / Numeric INTERVAL

Numeric * INTERVAL INTERVAL

Storage requirements

1-26 Oracle TimesTen In-Memory Database SQL Reference

SELECT * FROM t1 WHERE timestamp1 - timdstamp2 = INTERVAL '10' DAY;

You cannot extract YEAR from an INTERVAL DAY TO SECOND:

SELECT EXTRACT (YEAR FROM timestamp1 - timestamp2) FROM dual;

Restrictions on datetime and interval arithmetic operations
Consider these restrictions when performing datetime and interval arithmetic:

■ The results for addition and subtraction with DATE and TIMESTAMP types for
INTERVAL YEAR, INTERVAL MONTH are not closed. For example, adding 1
year to the DATE or TIMESTAMP of '2004-02-29' results in a date arithmetic error
(TimesTen error message 2787) because February 29, 2005 does not exist (2005 is
not a leap year). Adding INTERVAL '1' month to DATE '2005-01-30' also results in
the same error because February never has 30 days.

■ The results are closed for INTERVAL DAY.

Storage requirements
Variable-length columns whose declared column length is greater than 128 bytes are
stored out of line. Variable-length columns whose declared column length is less than
or equal to 128 bytes are stored inline. For character semantics, the number of bytes
stored out of line is dependent on the character set. For example, for a character set
with 4 bytes per character, variable-length columns whose declared column length is
greater than 32 (128/4) are stored out of line.

Table 1–5 shows the storage requirements of the various data types.

Table 1–5 Data type storage requirements

Type Storage required

BINARY (n) n bytes

BINARY_DOUBLE 8 bytes

BINARY_FLOAT 4 bytes

CHAR (n

[BYTE|CHAR])

n bytes or if character semantics, n characters. If character semantics, the length of the
column (n) is based on length semantics and character set.

DATE 7 bytes

INTERVAL An INTERVAL cannot be stored in TimesTen.

NCHAR(n) Bytes required is 2* n where n is the number of characters.

NUMBER 5 to 22 bytes

NVARCHAR2 (n) For NOT INLINE columns:

On 32-bit platforms, 2*(length of value) + 20 bytes (minimum of 28 bytes).

On 64-bit platforms, 2*(length of value) + 24 bytes (minimum of 40bytes).

For INLINE columns:

On 32-bit platforms, 2*(length of column) + 4 bytes.

On 64-bit platforms, 2*(length of column) + 8 bytes.

ROWID 12 bytes

TIMESTAMP 12 bytes

TT_BIGINT 8 bytes

Data type comparison rules

Data Types 1-27

Data type comparison rules
This section describes how values of each data type are compared in TimesTen.

Numeric values
A larger value is greater than a smaller value. -1 is less than 10 and -10 is less than -1.

The floating-point value NaN is greater than any other numeric value and is equal to
itself.

Date values
A later date is considered greater than an earlier one. For example, the date equivalent
of ‘10-AUG-2005’ is less than that of ‘30-AUG-2006’ and ‘30-AUG-2006 1:15pm’ is
greater than ‘30-AUG-2006 10:10am’.

Character values
Character values are compared by:

TT_DATE 4 bytes

TT_DECIMAL(p,s) Approximately p/2 bytes

TT_INT[EGER] 4 bytes

TT_SMALLINT 2 bytes

TT_TIME 8 bytes

TT_TIMESTAMP 8 bytes

TT_TINYINT 1 byte

VARBINARY (n) For NOT INLINE columns:

On 32-bit platforms, length of value + 20 bytes (minimum of 28 bytes).

On 64-bit platforms, length of value + 24 bytes (minimum of 40 bytes).

For INLINE columns:

On 32-bit platforms, length of column + 4 bytes.

On 64-bit platforms, length of column + 8 bytes.

VARCHAR2 (n

[BYTE|CHAR])

For NOT INLINE columns:

On 32-bit platforms, length of value + 20 bytes (minimum of 28 bytes). NULL value is
stored as (null bit) + 4 bytes, or 4.125 bytes.

On 64-bit platforms, length of value + 24 bytes (minimum of 40 bytes). NULL value is
stored as (null bit)+8 bytes, or 8.125 bytes.

This storage principal holds for all variable length NOT INLINE data types: TT_
VARCHAR, TT_NVARCHAR, VARCHAR2, NVARCHAR2, VARBINARY.

For INLINE columns:

On 32-bit platforms, n + 4 bytes. NULL value is stored as (null bit)+n+4 bytes.

On 64-bit platforms, n + 8 bytes. NULL value is stored as (null bit)+n+8 bytes.

If character semantics, the length of the column (n) is based on length semantics and
character set.

Table 1–5 (Cont.) Data type storage requirements

Type Storage required

Data type conversion

1-28 Oracle TimesTen In-Memory Database SQL Reference

■ Binary and linguistic sorting

■ Blank-padded and nonpadded comparison semantics

Binary and linguistic sorting
In binary sorting, TimesTen compares character strings according to the concatenated
value of the numeric codes of the characters in the database character set. One
character is greater than the other if it has a greater numeric values than the other in
the character set. Blanks are less than any character.

Linguistic sorting is useful if the binary sequence of numeric codes does not match the
linguistic sequence of the characters you are comparing. In linguistic sorting, SQL
sorting and comparison are based on the linguistic rule set by NLS_SORT. For more
information on linguistic sorts, see "Linguistic sorts" in Oracle TimesTen In-Memory
Database Operations Guide.

The default is binary sorting.

Blank-padded and nonpadded comparison semantics
With blank-padded semantics, if two values have different lengths, TimesTen adds
blanks to the shorter value until both lengths are equal. Values are then compared
character by character up to the first character that differs. The value with the greater
character in the first differing position is considered greater. If two values have no
differing characters, then they are considered equal. Thus, two values are considered
equal if they differ only in the number of trailing blanks.

Blank-padded semantics are used when both values in the comparison are expressions
of type CHAR or NCHAR or text literals.

With nonpadded semantics, two values are compared character by character up to the
first character that differs. The value with the greater character in that position is
considered greater. If two values that have differing lengths are identical up to the end
of the shorter one, then the longer one is considered greater. If two values of equal
length have no differing characters, they are considered equal.

Nonpadded semantics are used when both values in the comparison have the type
VARCHAR2 or NVARCHAR2.

An example with blank-padded semantics:

'a ' = 'a'

An example with nonpadded semantics:

'a ' > 'a'

Data type conversion
Generally an expression cannot contain values of different data types. However,
TimesTen supports both implicit and explicit conversion from one data type to
another. We recommend explicit conversion.

Implicit data type conversion
The following rules apply:

■ Conversions between exact numeric values (TT_TINYINT, TT_SMALLINT, TT_
INTEGER, TT_BIGINT, NUMBER) and floating-point values (BINARY_FLOAT,

INF and NAN

Data Types 1-29

BINARY_DOUBLE) can be inexact because the exact numeric values use decimal
precision whereas the floating-point numbers use binary precision.

■ When comparing a character value with any date, time, or datetime value,
TimesTen converts the character data to the date, time, or datetime value.

■ Implicit and explicit CHAR/VARCHAR2 <-> NCHAR/NVARCHAR2
conversions are supported except when the character set is TIMESTEN8. An
example of explicit conversion:

Command> CREATE TABLE convdemo (c1 CHAR (10), x1 TT_INTEGER);
Command> CREATE TABLE convdemo2 (c1 NCHAR (10), x2 TT_INTEGER);
Command> INSERT INTO convdemo VALUES ('ABC', 10);
1 row inserted.
Command> INSERT INTO convdemo VALUES ('def', 100);
1 row inserted.
Command> INSERT INTO convdemo2 SELECT * FROM convdemo;
2 rows inserted.
Command> SELECT x1,x2,convdemo.c1, convdemo2.c1
 > FROM convdemo, convdemo2 where Ccnvdemo.c1 = convdemo2.c1;
X1, X2, C1, C1
< 10, 10, ABC , ABC >
< 100, 100, def , def >
2 rows found.

NULL values
A NULL value indicates the absence of a value. It is a placeholder for a value that is
missing. Any column in a table or parameter in an expression, regardless of its data
type, can contain NULL values unless you specify NOT NULL for the column when
you create the table.

The following properties of NULL values affect operations on rows, parameters, or
local variables:

■ NULL values always sort highest in a sequence of values.

■ Two NULL values are not equal to each other except in a GROUP BY or SELECT
DISTINCT operation.

■ An expression containing a NULL value evaluates to NULL. For example,
(5-col), where col is NULL, evaluates to NULL.

Because of these properties, TimesTen ignores columns, rows, or parameters
containing NULL values when:

■ Joining tables if the join is on a column containing NULL values.

■ Executing aggregate functions.

In several SQL predicates, described in Chapter 4, "Search Conditions," you can
explicitly test for NULL values. In an application, you can use the ODBC functions
SQLBindCol, SQLBindParameter, SQLGetData, and SQLParamData, or you can
use the JDBC functions PreparedStatement.setNull and ResultSet.getXXXX
with ResultSet.wasNull to handle input and output of NULL values.

INF and NAN
TimesTen supports the IEEE floating-point values Inf (positive infinity), -Inf (negative
infinity) and NaN (not a number).

INF and NAN

1-30 Oracle TimesTen In-Memory Database SQL Reference

Constant values
You can use constant values in places where a floating-point constant is allowed: The
supported constant values are:

■ BINARY_FLOAT_INFINITY

■ -BINARY_FLOAT_INFINITY

■ BINARY_DOUBLE_INFINITY

■ -BINARY_DOUBLE_INFINITY

■ BINARY_FLOAT_NAN

■ BINARY_DOUBLE_NAN

In the following example, a table is created with a column of type BINARY_FLOAT
and a column of type TT_INTEGER. BINARY_FLOAT_INFINITY and BINARY_
FLOAT_NAN are inserted into the column of type BINARY_FLOAT.

Command> CREATE TABLE bfdemo (id BINARY_FLOAT, Ii2 TT_INTEGER);
Command> INSERT INTO bfdemo VALUES (BINARY_FLOAT_INFINITY, 50);
1 row inserted.
Command> INSERT INTO bfdemo VALUES (BINARY_FLOAT_NAN, 100);
1 row inserted.
Command> SELECT * FROM bfdemo;
< INF, 50 >
< NAN, 100 >
2 rows found.

Primary key values
Inf, -Inf, and NaN are acceptable values in columns defined with a primary key. This is
a deviation in behavior from NULL. NULL values are not allowed on columns defined
with a primary key.

You can only insert Inf, -Inf, and NaN values into BINARY_FLOAT and BINARY_
DOUBLE columns.

Selecting Inf and NaN (floating-point conditions)
Floating-point conditions determine whether an expression is infinite or is the
undefined result of an operation (NaN or "not a number").

In the syntax:

Expression IS [NOT] {NAN| INFINITE}

Expression must either resolve to a numeric data type or to a data type that can be
implicitly converted to a numeric data type.

The following table describes the floating-point conditions.

Condition Operation Example

IS [NOT] NAN Returns TRUE if Expression
is the value NaN when NOT is
not specified. Returns TRUE if
Expression is not the value
NaN when NOT is specified.

SELECT * FROM bfdemo WHERE id IS
NOT NAN;
ID, ID2
< INF, 50 >
1 row found.

Overflow and truncation

Data Types 1-31

The following rules apply to comparisons with Inf and Nan:

■ Comparison between Inf (or -Inf) and a finite value are as expected. For example, 5
> -Inf.

■ (Inf = Inf) and (Inf > -Inf) both evaluate to True.

■ (NaN = NaN) evaluates to True.

In reference to collating sequences:

■ -Inf sorts lower than any other value.

■ Inf sorts higher than any other value, but lower than Nan and NULL.

■ NaN sorts higher than Inf.

■ NULL sorts higher than NaN. NULL is always the largest value in any collating
sequence.

Expressions involving Inf and NaN
■ Expressions containing floating-point values may generate Inf, -Inf, or NaN. This

can occur either because the expression generated overflow or exceptional
conditions or because one or more of the values in the expression was Inf, -Inf, or
NaN. Inf and NaN are generated in overflow or division by 0 conditions.

■ Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values are.
If you wish to exclude Inf and NaN from aggregates (or from any selection), use
both the IS NOT NAN and IS NOT INFINITE predicates.

Overflow and truncation
Some operations can result in data overflow or truncation. Overflow results in an error
and can generate Inf. Truncation results in loss of least significant data.

Exact values are truncated only when they are stored in the data store by an INSERT or
UPDATE statement, and if the target column has smaller scale than the value.
TimesTen returns a warning when such truncation occurs. If the value does not fit
because of overflow, TimesTen returns the special value Inf and does not insert the
specified value.

IS [NOT] INFINITE Returns TRUE if Expression
is the value +INF or -INF
when NOT is not specified.
Returns TRUE if Expression
is neither +INF nor -INF when
NOT is specified.

SELECT * FROM bfdemo WHERE id IS
NOT INFINITE;
ID, ID2
< NAN, 100 >
1 row found.

Note: The constant keywords represent specific BINARY_FLOAT
and BINARY_DOUBLE values. The comparison keywords correspond
to properties of a value and are not specific to any type (although they
can only evaluate to true for BINARY_FLOAT or BINARY_DOUBLE
types or types that can be converted to BINARY_FLOAT or BINARY_
DOUBLE).

Condition Operation Example

Underflow

1-32 Oracle TimesTen In-Memory Database SQL Reference

TimesTen may truncate approximate values during computation and when the values
are inserted into the data store or when data store values are updated. TimesTen
returns an error only upon insertion or update. When overflow with approximate
values occurs, TimesTen returns the special value Inf.

There are several circumstances that can cause overflow:

■ During arithmetic operations. Overflow can occur when multiplication results in a
number larger than the maximum value allowable in its type. Arithmetic
operations are defined in Chapter 3, "Expressions."

■ When using aggregate functions. Overflow can occur when the sum of several
numbers exceeds the maximum allowable value of the result type. Aggregate
functions are defined in Chapter 3, "Expressions."

■ During type conversion. Overflow can also occur when, for example, a TT_
INTEGER value is converted to a TT_SMALLINT value.

Truncation can cause an error or warning for alphanumeric or numeric data types:

■ Character data. An error occurs if a string is truncated because it is too long for its
target type. For NCHAR and NVARCHAR2 types, truncation always occurs on
Unicode character boundaries. In the NCHAR data types, a single-byte value (half
a Unicode character) has no meaning and is not possible.

■ Numeric data. A warning occurs when any trailing non-zero digit is dropped from
the fractional part of a numeric value.

Underflow
When an approximate numeric value is too close to zero to be represented by the
hardware, TimesTen underflows to zero and returns a truncation warning.

Replication limits
TimesTen places the following limits on the size of data types in a data store that is
being replicated:

■ VARCHAR2 and VARBINARY columns cannot exceed 4 megabytes. For character
length semantics, the limit is 4 megabytes. The database character set determines
how many characters can be represented by 4 megabytes. The minimum number
of characters is 1,000,000/ 4 = 250,000 characters.

■ NVARCHAR2 columns cannot exceed 500,000 characters (4 megabytes).

TimesTen type mode (backward compatibility)
TimesTen supports a data type backward compatibility mode called TimesTen type
mode. The type mode is a data store creation attribute. TypeMode=1 indicates
TimesTen mode.

For more information on types modes, see "TypeMode" in Oracle TimesTen In-Memory
Database Reference.

For information on data type usage in TimesTen type mode, refer to documentation
from previous releases of TimesTen.

TimesTen type mode (backward compatibility)

Data Types 1-33

Data types supported in TimesTen type mode

Table 1–6 Data types supported in TimesTen type mode

Data type Description

BIGINT A signed 8-byte integer in the range -9,223,372,036,854,775,808-(263) to
9,223,372,036,854,775,807 (263 - 1).

Alternatively, specify TT_BIGINT.

BINARY (n) Fixed-length binary value of n bytes. Legal values for n range from 1 to 8300.

BINARY data is padded to the maximum column size with trailing zeroes.

BINARY_DOUBLE 64-bit floating -point number. BINARY_DOUBLE is a double-precision native floating
point number. Supports +Inf, -Inf and Nan values. BINARY_DOUBLE is an
approximate numeric value consisting of an exponent and mantissa. You can use
exponential or E-notation. BINARY_DOUBLE has binary precision 53.

Minimum positive finite value: 2.22507485850720E-308

Maximum positive finite value: 1.79769313486231E+308

Alternatively, specify DOUBLE [PRECISION] or FLOAT [(53)].

BINARY_FLOAT 32-bit floating-point number. BINARY_FLOAT is a single-precision native
floating-point type. Supports +Inf, -Inf and NaN values. BINARY_FLOAT is an
approximate numeric value consisting of an exponent and mantissa. You can use
exponential or E-notation. BINARY_FLOAT has binary precision 24.

Minimum positive finite value: 1.17549E-38F

Maximum positive finite value: 3.40282E+38F

Alternatively, specify REAL or FLOAT (24).

CHAR[ACTER] [(n
[BYTE|CHAR])]

Fixed-length character string of length n bytes or characters. Default is 1 byte.

BYTE indicates that the column has byte length semantics. Legal values for n range
from a minimum of 1 byte to a maximum 8300 bytes.

CHAR indicates that the column has character length semantics. The minimum
CHAR length is 1 character. The maximum CHAR length depends on how many
characters fit in 8300 bytes. This is determined by the database character set in use.
For character set AL32UTF8, up to four bytes per character may be needed, so the
CHAR length limit ranges from 2075 to 8300 depending on the character set.

A zero-length string is a valid non-NULL value. CHAR data is padded to the
maximum column size with trailing blanks. Blank-padded comparison semantics are
used. For information on blank-padded and nonpadded semantics, see
"Blank-padded and nonpadded comparison semantics" on page 1-28.

Alternatively, specify TT_CHAR [(n [BYTE|CHAR])].

DATE Stores date information: century, year, month, date. The format is YYYY-MM-DD. MM
is expressed as an integer. For example: 2006-10-28.

Storage size is 4 bytes.

Valid dates are between 1753-01-01 (January 1,1753) and 9999-12-31 (December 31,
9999).

Alternatively, specify TT_DATE.

DEC[IMAL][(p[,s])] or

NUMERIC[(p[,s])]

An exact numeric value with a fixed maximum precision (total number of digits) and
scale (number of digits to the right of the decimal point). The precision p must be
between 1 and 40. The scale must be between 0 and p. The default precision is 40 and
the default scale is 0.

INTERVAL [+/-]
IntervalQualifier

TimesTen partially supports INTERVAL types, expressed with the type INTERVAL
and an IntervalQualifier. An IntervalQualifier can only specify a single field type with
no precision. The default leading precision is 8 digits for all INTERVAL types. The
single field type can be one of: YEAR, MONTH, DAY, HOUR, MINUTE or SECOND.
Currently, INTERVAL type can be specified only with a constant.

TimesTen type mode (backward compatibility)

1-34 Oracle TimesTen In-Memory Database SQL Reference

NCHAR[(n)] Fixed-length string of n two-byte Unicode characters.

The number of bytes required is 2* n where n is the specified number of characters.
NCHAR character limits are 1/2 the byte limits so the maximum size is 4150. Default
and minimum bytes of storage is 2n (2).

A zero-length string is a valid non-NULL value. NCHAR data is padded to the
maximum column size with U+0020 SPACE. Blank-padded comparison semantics are
used. For information on blank-padded and nonpadded semantics, see
"Blank-padded and nonpadded comparison semantics" on page 1-28.

Alternatively, specify TT_NCHAR[(n)].

NATIONAL CHARACTER and NATIONAL CHAR are synonyms for NCHAR.

SMALLINT A native signed 16 bit integer in the range –32,768 –(215) to 32,767 (215–1).

Alternatively, specify TT_SMALLINT.

TIME A time of day between 00:00:00 (12 midnight) and 23:59:59 (11:59:59 pm), inclusive.
The format is: HH:MI:SS. Storage size is 8 bytes.

TIMESTAMP A data and time between 1753-01-01 00:00:00 (January 1, 1753 midnight) and
9999-12-31 23:59:59 pm (11:59:59 pm on December 31, 9999), inclusive. Any values for
the fraction not specified in full microseconds result in a "Data Truncated" error. The
format is YYYY-MM-DD HH:MI:SS [.FFFFFF].

Storage size is 8 bytes.

Alternatively, specify TT_TIMESTAMP or [TT_]TIMESTAMP (6).

TINYINT Unsigned integer ranging from 0 to 255 (28-1).

Since TINYINT is unsigned, the negation of a TINYINT is SMALLINT.

Alternatively, specify TT_TINYINT.

INT[EGER] A signed integer in the range –2,147,483,648 –(231) to 2,147,483,647 (231–1).

Alternatively, specify TT_INTEGER.

Table 1–6 (Cont.) Data types supported in TimesTen type mode

Data type Description

TimesTen type mode (backward compatibility)

Data Types 1-35

NVARCHAR(n) Variable-length string of n two-byte Unicode characters.

The number of bytes required is 2* n where n is the specified number of characters.
NVARCHAR character limits are 1/2 the byte limits so the maximum size is 2,097,152
(221). You must specify n.

A zero-length string is a valid non-NULL value.

Blank-padded comparison semantics are used. For information on blank-padded and
nonpadded semantics, see "Blank-padded and nonpadded comparison semantics" on
page 1-28.

Alternatively, specify TT_NVARCHAR(n).

NATIONAL CHARACTER VARYING, NATIONAL CHAR VARYING, and NCHAR
VARYING are synonyms for NVARCHAR.

VARCHAR (n
[BYTE|CHAR])

Variable-length character string having maximum length n bytes or characters. You
must specify n.

BYTE indicates that the column has byte length semantics. Legal values for n range
from a minimum of 1 byte to a maximum 4194304 (222) bytes.

CHAR indicates that the column has character length semantics.

A zero-length string is a valid non-NULL value.

Blank-padded comparison semantics are used. For information on blank-padded and
nonpadded semantics, see "Blank-padded and nonpadded comparison semantics" on
page 1-28.

Alternatively, specify TT_VARCHAR (n [BYTE|CHAR]).

VARBINARY (n) Variable-length binary value having maximum length n bytes. Legal values for n
range from 1 to 4194304 (222).

Table 1–6 (Cont.) Data types supported in TimesTen type mode

Data type Description

TimesTen type mode (backward compatibility)

1-36 Oracle TimesTen In-Memory Database SQL Reference

Oracle data types supported in TimesTen type mode

Table 1–7 Oracle data types supported in TimesTen type mode

Data type Description

NUMBER [(precision [,scale])] Number having precision and scale. The precision ranges from 1 to 38
decimal. The scale ranges from -84 to 127. Both precision and scale are
optional.

If you do not specify a precision or a scale, then maximum precision of
38 and flexible scale are assumed.

NUMBER supports scale > precision and negative scale.

NUMBER stores zero as well as positive and negative fixed numbers
with absolute values from 1.0 x 10-130 to (but not including) 1.0 x 10126. If
you specify an arithmetic expression whose value has an absolute value
greater than or equal to 1.0 x 10126, then TimesTen returns an error.

In TimesTen type mode, the NUMBER data type stores 10e-89 as its
smallest (closest to zero) value.

ORA_CHAR [(n [BYTE|CHAR])] Fixed-length character string of length n bytes or characters. Default is 1
byte.

BYTE indicates that the column has byte length semantics. Legal values
for n range from a minimum of 1 byte to a maximum 8300 bytes.

CHAR indicates that the column has character length semantics. The
minimum CHAR length is 1 character. The maximum CHAR length
depends on how many characters fit in 8300 bytes. This is determined
by the database character set in use. For character set AL32UTF8, up to
four bytes per character may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the character set.

A zero-length string is interpreted as NULL.

ORA_CHAR data is padded to the maximum column size with trailing
blanks. Blank-padded comparison semantics are used. For information
on blank-padded and nonpadded semantics, see "Blank-padded and
nonpadded comparison semantics" on page 1-28.

ORA_DATE Stores date and time information: century, year, month, date, hour,
minute and second. Format is YYYY-MM-DD HHMMSS.

Valid date range is from January 1, 4712 BC to December 31, 9999 AD.

The storage size is 7 bytes. There are no fractional seconds.

ORA_NCHAR[(n)] Fixed-length string of length n two-byte Unicode characters.

The number of bytes required is 2* n where n is the specified number of
characters. NCHAR character limits are 1/2 the byte limits so the
maximum size is 4150. Default and minimum bytes of storage is 2n (2).

A zero-length string is interpreted as NULL.

ORA_NCHAR data is padded to the maximum column size with
U+0020 SPACE. Blank-padded comparison semantics are used. For
information on blank-padded and nonpadded semantics, see
"Blank-padded and nonpadded comparison semantics" on page 1-28.

TimesTen type mode (backward compatibility)

Data Types 1-37

ORA_NVARCHAR2(n) Variable-length string of n two-byte Unicode characters.

The number of bytes required is 2* n where n is the specified number of
characters. ORA_NVARCHAR2 character limits are one half the byte
limits so the maximum size is 2,097,152 (221). You must specify n.

A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used.

For information on blank-padded and nonpadded semantics, see
"Blank-padded and nonpadded comparison semantics" on page 1-28.

ORA_VARCHAR2 (n [BYTE|CHAR]) Variable-length character string having maximum length n bytes or
characters.

BYTE indicates that the column has byte length semantics. Legal values
for n range from a minimum of 1 byte to a maximum 4194304 (222) bytes.
You must specify n.

CHAR indicates that the column has character length semantics.

A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used. For information on
blank-padded and nonpadded semantics, see "Blank-padded and
nonpadded comparison semantics" on page 1-28.

ORA_TIMESTAMP

[(fractional_seconds_precision)]

Stores year, month, and day values of the date data type plus hour,
minute, and second values of time. Fractional_seconds_precision is the
number of digits in the fractional part of the seconds field. Valid date
range is from January 1, 4712 BC to December 31, 9999 AD.

The fractional seconds precision range is 0 to 9. The default is 6. Format
is:

YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]

Storage size 12 bytes.

Table 1–7 (Cont.) Oracle data types supported in TimesTen type mode

Data type Description

TimesTen type mode (backward compatibility)

1-38 Oracle TimesTen In-Memory Database SQL Reference

2

Names and Parameters 2-1

2Names and Parameters

This chapter presents general rules for names and parameters used in TimesTen SQL
statements. It includes the following topics:

■ Basic names

■ Owner names

■ Compound identifiers

■ Dynamic parameters

■ Duplicate parameter names

■ Inferring data type from parameters

Basic names
Basic names identify columns, tables, views and indexes. Basic names must follow
these rules:

■ The maximum length of a basic name is 30 characters.

■ A name can consist of any combination of letters (A to Z a to z), decimal digits (0
to 9), $, #, @, or underscore (_). For identifiers, the first character must be a letter
(A-Z a-z) and not a digit or special character. However, for parameter names, the
first character can be a letter (A-Z a-z), a decimal digit (0 to 9), or special characters
$, #, @, or underscore (_).

■ TimesTen changes lowercase letters (a to z) to the corresponding uppercase letters
(A to Z). Thus names are not case-sensitive.

■ If you enclose a name in quotation marks, you can use any combination of
characters (even if they are not in the set of legal characters). In that case, the first
character can also be any character. If a column, table, or index is initially defined
with a name enclosed in quotation marks and the name does not conform to the
rule noted in the second bullet, then that name must always be enclosed in
quotation marks whenever it is subsequently referenced.

■ Unicode characters are not allowed in names.

Owner names
The owner name is the user name of the account that created the table. Tables and
indexes defined by TimesTen itself have the owner SYS or TTREP. User objects cannot
be created with owner names SYS or TTREP. TimesTen converts all owner and table
names to upper case.

Compound identifiers

2-2 Oracle TimesTen In-Memory Database SQL Reference

Owners of tables in TimesTen are determined by the user ID settings or login names.
For cache groups, Oracle table owner names must always match TimesTen table owner
names.

Owner names may be specified by the user during table creation, in addition to being
automatically determined if they are left unspecified. See "CREATE TABLE" on
page 5-99. When creating owner names, follow the same rules as those for creating
basic names. See "Basic names" on page 2-1.

Compound identifiers
Basic names and user names are simple names. In some cases, simple names are
combined to form a compound identifier, which consists of an owner name combined
with one or more basic names, with periods (.) between them.

In most cases you can abbreviate a compound identifier by omitting one of its parts. If
you do not use a fully qualified name, a default value is automatically used in place of
the missing part. For example, if you omit the owner name (and the period) when you
refer to tables you own, TimesTen generates the owner name by using your login
name.

A complete compound identifier, including all of its parts, is called a fully qualified
name. Different owners can have tables and indexes with the same name. The fully
qualified name of these objects must be unique.

The following are compound identifiers:

■ Column identifier: [[Owner.]TableName.]ColumnName

■ [Owner.]IndexName

■ Table identifier: [Owner.]TableName

■ Row identifier: [[Owner.]TableName.]rowid

Dynamic parameters
Dynamic parameters are used to pass information between an application program and
TimesTen. They are placeholders in SQL commands and are replaced at runtime with
actual values.

A dynamic parameter name must be preceded by a colon (:) when used in a SQL
command and must conform to the TimesTen rules for basic names. However, unlike
identifiers, parameter names can start with any of the following characters:

■ Uppercase letters: A to Z

■ Lowercase letters: a to z

■ Digits: 0 to 9

■ Special characters: # $ @ _

Enhanced ":" style parameter markers have this form:

:parameter [INDICATOR] :indicator

Note: Instead of using a :DynamicParameter sequence, the application
can use a ? for each dynamic parameter.

Inferring data type from parameters

Names and Parameters 2-3

The :indicator is considered to be a component of the :parameter. It is not
counted as a distinct parameter. Do not specify '?' for this style of parameter marker.

Duplicate parameter names
Consider this SQL statement:

SELECT * FROM t1 WHERE c1=:a AND c2=:a AND c3=:b AND c4=:a;

Traditionally in TimesTen, multiple instances of the same parameter name in a SQL
statement are considered to be multiple occurrences of the same parameter. When
assigning parameter numbers to parameters, TimesTen assigns parameter numbers
only to the first occurrence of each parameter name. The second and subsequent
occurrences of a given name do not get their own parameter numbers. In this case, a
TimesTen application binds a value for every unique parameter in a SQL statement. It
cannot bind different values for different occurrences of the same parameter name nor
can it leave any parameters or parameter occurrences unbound.

In Oracle Database, multiple instances of the same parameter name in a SQL statement
are considered to be different parameters. When assigning parameter numbers, Oracle
assigns a number to each parameter occurrence without regard to name duplication.
An Oracle application, at a minimum, binds a value for the first occurrence of each
parameter name. For the subsequent occurrences of a given parameter, the application
can either leave the parameter occurrence unbound or it can bind a different value for
the occurrence.

The following table shows a query with the parameter numbers that TimesTen and
Oracle Database assign to each parameter.

The total number of parameter numbers for TimesTen in this example is 2. The total
number of parameters for Oracle Database in this example is 4. The parameter
bindings provided by an application produce different results for the traditional
TimesTen behavior and the Oracle behavior.

You can use the DuplicateBindMode attribute to determine whether applications
use traditional TimesTen parameter binding for duplicate occurrences of a parameter
in a SQL statement or Oracle-style parameter binding. Oracle-style parameter binding
is the default.

Inferring data type from parameters
Consider this statement:

SELECT :a FROM dual;

Query
TimesTen
parameter number

Oracle Database
parameter number

SELECT *

FROM t1

WHERE c1=:a 1 1

AND c2=:a 1 2

AND c3=:b 2 3

AND c4=:a; 1 4

Inferring data type from parameters

2-4 Oracle TimesTen In-Memory Database SQL Reference

TimesTen cannot infer the data type of parameter a from the query. TimesTen returns
this error:

2778: Cannot infer type of parameter from its use
The command failed.

Use the CAST function to declare the data type for parameters:

SELECT CAST (:a AS NUMBER) FROM dual;

3

Expressions 3-1

3Expressions

Expressions are used for the following purposes:

■ The select list of the INSERT...SELECT statement

■ A condition of the WHERE clause and the HAVING clause

■ The GROUP BY and ORDER BY clauses

■ The VALUES clause of the INSERT and MERGE statements

■ The SET clause of the UPDATE and MERGE statements

ROWID specification
TimesTen assigns a unique ID called a rowid to each row stored in a table. The rowid
has data type ROWID. You can examine a rowid by querying the ROWID
pseudocolumn.

Because the ROWID pseudocolumn is not a real column, it does not require database
space and cannot be updated, indexed or dropped.

The rowid value persists throughout the life of the table row, but the system can
reassign the rowid to a different row after the original row is deleted. Zero is not a
valid value for a rowid.

Rowids persists through recovery, backup and restore operations. They do not persist
through replication, ttMigrate or ttBulkCp operations.

See "Expression specification" on page 3-3 for more information on rowids. See
"ROWID data type" on page 1-21 for more information about the ROWID data type.

ROWNUM specification
For each row returned by a query, the ROWNUM pseudocolumn returns a number
indicating the order in which the row was selected. The first row selected has a
ROWNUM of 1, the second a ROWNUM of 2, and so on.

Use ROWNUM to limit the number of rows returned by a query as in this example:

SELECT * FROM employees WHERE ROWNUM < 10;

The order in which rows are selected depends on the index used and the join order. If
you specify an ORDER BY clause, ROWNUM is assigned before sorting. However, the
presence of the ORDER BY clause may change the index used and the join order. If the
order of selected rows changes, the ROWNUM value associated with each selected
row could also change.

ROWNUM specification

3-2 Oracle TimesTen In-Memory Database SQL Reference

For example, the following query may return a different set of employees than the
preceding query if a different index is used:

SELECT * FROM employees WHERE ROWNUM < 10 ORDER BY last_name;

Conditions testing for ROWNUM values greater than a positive integer are always
false. For example, the following query returns no rows:

SELECT * FROM employees WHERE ROWNUM > 1;

Use ROWNUM to assign unique values to each row of a table. For example:

UPDATE my_table SET column1 = ROWNUM;

If your query contains either FIRST NumRows or ROWS m TO n, do not use ROWNUM
to restrict the number of rows returned. For example, the following query results in an
error message:

SELECT FIRST 2 * FROM employees WHERE ROWNUM <1 ORDER BY employee_id;
2974: Using rownum to restrict number of rows returned cannot be combined with
first N or rows M to N

Expression specification

Expressions 3-3

Expression specification

An expression specifies a value to be used in a SQL operation.

An expression can consist of a primary or several primaries connected by arithmetic
operators, comparison operators, string or binary operators, bit operators or any of the
functions described in this chapter. A primary is a signed or unsigned value derived
from one of the items listed in the SQL syntax:

SQL syntax
{ColumnName | ROWID | {? | :DynamicParameter} |
AggregateFunction | Constant | (Expression)}

or
[[+ |-] {ColumnName | SYSDATE | TT_SYSDATE|GETDATE() |
{? | :DynamicParameter} | AggregateFunction |
Constant | {~ | + | -} Expression}]
 [...]
or

Expression1 [& | | | ^ | + | / | * | -] Expression2
or

Expression1 | | Expression2
or

Expression

Component Description

+, – Unary plus and unary minus. Unary minus changes the sign of the
primary. The default is to leave the sign unchanged.

ColumnName Name of a column from which a value is to be taken. Column names
are discussed in Chapter 2, "Names and Parameters."

ROWID TimesTen assigns a unique ID called a rowid to each row stored in a
table. The rowid value can be retrieved through the ROWID
pseudocolumn.

?

:DynamicParameter

A place holder for a dynamic parameter.

The value of the dynamic parameter is supplied at runtime.

AggregateFunction A computed value. See "Aggregate functions" on page 3-8.

Constant A specific value. See "Constants" on page 3-11.

(Expression) Any expression enclosed in parentheses.

Expression1

Expression2

Expression1 and Expression2, when used with the bitwise
operators, can be of integer or binary types. The types of both
expressions must be compatible. See Chapter 1, "Data Types."

* Multiplies two primaries.

/ Divides two primaries.

+ Adds two primaries.

– Subtracts two primaries.

& Bitwise AND of the two operands. Sets a bit to 1 if and only if both of
the corresponding bits in Expression1 and Expression2 are 1.
Sets a bit to 0 if the bits differ or both are 0.

Expression specification

3-4 Oracle TimesTen In-Memory Database SQL Reference

Description
■ Arithmetic operators can be used between numeric values. See "Numeric data

types" on page 1-15

■ Arithmetic operators can also be used between date-time values and interval
types. The result of a date-time expression is either a date-time type or an interval
type.

■ Arithmetic operators cannot be applied to string values.

■ Elements in an expression are evaluated in the following order:

– Aggregate functions and expressions in parentheses.

– Unary pluses and minuses.

– The * and / operations.

– The + and – operations.

– Elements of equal precedence are evaluated in left-to-right order.

■ You can enclose expressions in parentheses to control the order of their evaluation.
For example:

10 * 2 – 1 = 19 but 10 * (2 – 1) = 10

■ Type conversion, truncation, underflow, or overflow can occur when some
expressions are evaluated. See Chapter 1, "Data Types".

■ If either operand in a numeric expression is NULL, the result is NULL.

■ Since NVL takes two parameters, both designated as an "expression", TimesTen
does not permit NULL in either position. If there is a NULL value in an
expression, comparison operators and other predicates evaluate to NULL. See
Chapter 4, "Search Conditions" for more information on evaluation of comparison
operators and predicates containing NULL values. TimesTen permits inserting
NULL, but in general INSERT takes only specific values, and not general
expressions.

■ The query optimizer and execution engine permit multiple rowid lookups when a
predicate specifies a disjunct of rowid equalities or uses IN. For example, multiple
fast rowid lookups are executed for:

| Bitwise OR of the two operands. Sets a bit to 1 if one or both of the
corresponding bits in Expression1 and Expression2 are 1. Sets a
bit to 0 if both of the corresponding bits are 0.

~ Bitwise NOT of the operand. Takes only one Expression and inverts
each bit in the operand, changing all the ones to zeros and zeros to
ones.

^ Exclusive OR of the two operands. Sets the bit to 1 where the
corresponding bits in its Expression1 and Expression2 are
different and to 0 if they are the same. If one bit is 0 and the other bit
is 1, the corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to 0.

 | | Concatenates Expression1 and Expression2, where both
expressions are character strings. Forms a new string value that
contains the values of both expressions. See also "CONCAT" on
page 3-36.

Component Description

Expression specification

Expressions 3-5

WHERE ROWID = :v1 OR ROWID = :v2

■ or equivalently:

WHERE ROWID IN (:v1, :v2)

■ The ? or :DynamicParameter can be used as a dynamic parameter in an
expression.

Examples
This example shows a dynamic parameter in the WHERE clause of any SELECT
statement:

SELECT *
FROM purchasing.orders
WHERE partnumber = ?
AND ordernumber > ?
ORDER BY ordernumber;

This example shows a dynamic parameter in the WHERE and SET clauses of an
UPDATE statement:

UPDATE purchasing.parts
SET salesprice = :dynamicparameter1
WHERE partnumber = :dynamicparameter2;

This example shows a dynamic parameter in the WHERE clause of a DELETE
statement:

DELETE FROM purchasing.orderitems
WHERE itemnumber BETWEEN ? AND ?;

This example shows a dynamic parameter in the VALUES clause of an INSERT
statement. In this example, both ? and :dynamicparameter are used where
:dynamicparameter1 corresponds to both the second and fourth columns of the
purchasing.orderitems table. Therefore, only four distinct dynamic parameters
need to be passed to this expression with the second parameter used for both the
second and fourth columns.

INSERT INTO purchasing.orderitems VALUES
 (?,:dynamicparameter1,
 :dynamicparameter2,
 :dynamicparameter1,?);

This example demonstrates that both ? and :dynamicparameter can be used in the
same SQL statement and shows the semantic difference between repeating both types
of dynamic parameters.

Examples of bitwise operators:

Command> SELECT 0x183D & 0x00FF from dual;
< 003D >
1 row found.
Command> SELECT ~255 FROM dual;
< -256 >
1 row found.
Command> SELECT 0x08 | 0x0F FROM dual;
< 0F >
1 row found.

Subqueries

3-6 Oracle TimesTen In-Memory Database SQL Reference

Subqueries

TimesTen supports subqueries in INSERT...SELECT, CREATE VIEW, CREATE VIEW
or UPDATE statements or in an update SET clause, in a search condition and as a
derived table. TimesTen supports table subqueries and scalar subqueries. It does not
support row subqueries. A subquery can specify an aggregate with a HAVING clause
or joined table. It can also be correlated.

SQL syntax
[NOT] EXISTS | [NOT] IN (Subquery)
Expression {= | <> | > | >= | < | <= } [ANY | ALL] (Subquery)
Expression [NOT] IN (ValueList | Subquery)

Description
TimesTen supports queries with the characteristics listed in each section.

Table subqueries
■ A subquery can appear in the WHERE clause or HAVING clause of any statement,

except one that creates a MATERIALIZED VIEW. Only one table subquery can be
specified in a predicate. These predicates can be specified in a WHERE or
HAVING clause, an OR expression within a WHERE or HAVING clause, or an ON
clause of a joined table. They cannot be specified in a CASE expression, a
materialized view, or a HAVING clause that uses the + operator for outer joins.

■ A subquery can be specified in an EXISTS or NOT EXISTS predicate, a quantified
predicate with ANY or ALL, or a comparison predicate. The allowed operators for
both comparison and quantified predicates are: =, <, >, <=, >=, <>. The subquery
cannot be connected to the outer query through a UNIQUE or NOT UNIQUE
operator.

■ Only one subquery can be specified in a quantified or comparison predicate.
Specify the subquery as either the right operand or the left operand of the
predicate, but not both.

■ The subquery should not have an ORDER BY clause.

■ FIRST NumRows is not supported in subquery statements.

■ In a query specified in a quantified or comparison predicate, the underlying
SELECT must have a single expression in the select list. In a query specified in a
comparison predicate, if the underlying select returns a single row, the return
value is the select result. If the underlying select returns no row, the return value is
NULL. It is an error if the subquery returns multiple rows.

Scalar subqueries (a scalar subquery returns a single value)
■ A nonverifiable scalar subquery has a predicate such that the optimizer cannot

detect at compile time that the subquery returns at most one row for each row of
the outer query. The subquery cannot be specified in an OR expression.

■ Neither outer query nor any scalar subquery should have a DISTINCT modifier.

Examples
Examples of supported subqueries for a list of customers having at least one
unshipped order:

Subqueries

Expressions 3-7

SELECT customers.name FROM customers
WHERE EXISTS (SELECT 1 FROM orders
WHERE customers.id = orders.custid
AND orders.status = 'unshipped');

SELECT customers.name FROM customers
WHERE customers.id = ANY

(SELECT orders.custid FROM orders
WHERE orders.status = 'unshipped');

SELECT customers.name FROM customers
WHERE customers.id IN

(SELECT orders.custid FROM orders
WHERE orders.status = 'unshipped');

In this example, list items are shipped on the same date as when they are ordered:

SELECT line_items.id FROM line_items
WHERE line_items.ship_date =

(SELECT orders.order_date FROM orders
WHERE orders.id = line_items.order_id);

Aggregate functions

3-8 Oracle TimesTen In-Memory Database SQL Reference

Aggregate functions

Aggregate functions specify a value computed with data from a set of rows described
in an argument. The argument, enclosed in parentheses, is an expression.

Aggregate functions can be specified in the select list or the HAVING clause. See
"INSERT...SELECT" on page 5-142 for more information. The value of the expression is
computed using each row that satisfies the WHERE clause.

SQL syntax
{AVG ({Expression | [ALL | DISTINCT] ColumnName})
 MAX ({Expression | [ALL | DISTINCT] ColumnName | ROWID})
 MIN ({Expression | [ALL | DISTINCT] ColumnName | ROWID})
 SUM ({Expression | [ALL | DISTINCT] ColumnName})
 COUNT ({ * | [ALL | DISTINCT] ColumnName | ROWID})
}

Description
■ If an aggregate function is computed over an empty table in which GROUP BY is

not used, the results are as follows:

– COUNT returns 0.

– AVG, SUM, MAX, and MIN return NULL.

■ If an aggregate function is computed over an empty group or an empty grouped
table (GROUP BY is used):

Component Description

Expression Specifies an argument for the aggregate function. The expression itself
cannot be an aggregate function.

AVG Computes the arithmetic mean of the values in the argument. NULL values
are ignored. AVG can be applied only to numeric data types.

MAX Finds the largest of the values in the argument (ASCII comparison for
alphabetic types). NULL values are ignored. MAX can be applied to
numeric, character, and BINARY data types.

MIN Finds the smallest of the values in the argument (ASCII comparison for
alphabetic types). NULL values are ignored. MIN can be applied to numeric,
character, and BINARY data types.

SUM Finds the total of all values in the argument. NULL values are ignored. SUM
can be applied to numeric data types only.

COUNT * Counts all rows that satisfy the WHERE clause, including rows containing
NULL values. The data type of the result is TT_INTEGER. For more
information on the number of rows in a table, see the description for the
NUMTUPS field in SYS.TABLES.

COUNT

ColumnName

Counts all rows in a specific column. Rows containing NULL values are not
counted. The data type of the result is TT_INTEGER. For more information
on the number of rows in a table, see the description for the NUMTUPS field
in SYS.TABLES.

ALL Includes any duplicate rows in the argument of an aggregate function. If
neither ALL nor DISTINCT is specified, ALL is assumed.

DISTINCT Eliminates duplicate column values from the argument of an aggregate
function. Can be specified for more than one column.

Aggregate functions

Expressions 3-9

– COUNT returns nothing.

– AVG, SUM, MAX, and MIN return nothing.

■ For SUM:

– If the source is TT_TINYINT, TT_SMALLINT, or TT_INTEGER, the result data
type is TT_INTEGER.

– If the source is NUMBER, then the result data type is NUMBER with
undefined scale and precision.

– If the source is TT_DECIMAL, then the result data type is TT_DECIMAL with
maximum precision.

– For all other data types, the result data type is the same as the source.

■ For MAX and MIN:

– The result data type is the same as the source.

■ For AVG:

– AVG is evaluated as SUM/COUNT. The result data type is derived using the
rule that is applied for the DIV operator.

See Chapter 1, "Data Types" for information about:

■ Truncation and type conversion that may occur during the evaluation of aggregate
functions.

■ Precision and scale of aggregate functions involving numeric arguments.

■ Control of the result type of an aggregate function.

Examples
Calculate the average salary for employees in the HR schema. Use CAST to cast the
average as the data type of the column:

Command> SELECT CAST(AVG (salary) AS NUMBER (8,2)) FROM employees;
< 6461.68 >

Calculate the MAX salary for employees in the HR schema:

Command> SELECT MAX (salary) FROM employees;
< 24000 >
1 row found.

The example uses DESCRIBE to show the data type that is returned when using the
SUM aggregate. The aggregates table is created and columns with different data
types are defined:

Command> CREATE TABLE aggregates (col1 TT_TINYINT, col2 TT_SMALLINT, col3 TT_
INTEGER, col4 TT_BIGINT, col5 NUMBER (4,2),
col6 TT_DECIMAL (6,2), col7 BINARY_FLOAT, col8 BINARY_DOUBLE);
Command> DESCRIBE SELECT SUM (col1) FROM aggregates;
Prepared Statement:
Columns:
EXP TT_INTEGER

Command> DESCRIBE SELECT SUM (col2) FROM aggregates;
Prepared Statement:
Columns:

EXP TT_INTEGER
Command> DESCRIBE SELECT SUM (col3) FROM aggregates;
Prepared Statement:

Aggregate functions

3-10 Oracle TimesTen In-Memory Database SQL Reference

Columns:
EXP TT_INTEGER

Command> DESCRIBE SELECT SUM (col4) FROM Aggregates;
Prepared Statement:
Columns:

EXP TT_BIGINT
Command> DESCRIBE SELECT SUM (col5) FROM aggregates;
Prepared Statement:
Columns:

EXP NUMBER
Command> DESCRIBE SELECT SUM (col6) FROM aggregates;
Prepared Statement:
Columns:

EXP TT_DECIMAL (40,2)
Command> DESCRIBE SELECT SUM (col7) FROM aggregates;
Prepared Statement:
Columns:

EXP BINARY_FLOAT
Command> DESCRIBE SELECT SUM (col8) FROM Aagregates;
Prepared Statement:
Columns:
EXP BINARY_DOUBLE

Constants

Expressions 3-11

Constants

A constant is a literal value.

SQL syntax
{IntegerValue | FloatValue |FloatingPointLiteral|

FixedPointValue | 'CharacterString'|
'NationalCharacterString' | 0xHexadecimalString |
'DateString' | DateLiteral |'TimeString' |
TimeLiteral | 'TimestampString' | TimestampLiteral |
IntervalLiteral | BINARY_FLOAT_INFINITY |
BINARY_DOUBLE_INFINITY | -BINARY_FLOAT_INFINITY |
-BINARY_DOUBLE_INFINITY | BINARY_FLOAT_NAN |
BINARY_DOUBLE_NAN

}

Constant Description

IntegerValue A whole number compatible with TT_INTEGER, TT_BIGINT
or TT_SMALLINT data types or an unsigned whole number
compatible with the TT_TINYINT data type. For example:

155, 5, -17

FloatValue A floating-point number compatible with the BINARY_
FLOAT or BINARY_DOUBLE data types. Examples:

.2E-4, 1.23e -4, 27.03, -13.1

FloatingPointLiteral Floating point literals are compatible with the BINARY_
FLOAT and BINARY_DOUBLE data types. f or F indicates
that the number is a 32-bit floating point number (of type
BINARY_FLOAT). d or D indicates that the number is a
64-bit floating point number (of type BINARY_DOUBLE).

For example: 123.23F, 0.5d

FixedPointValue A fixed-point number compatible with the BINARY_FLOAT,
BINARY_DOUBLE or NUMBER data types. For example:

27.03

CharacterString A character string compatible with CHAR or VARCHAR2
data types. String constants are delimited by single quotation
marks. For example:

'DON''T JUMP!'

Two single quotation marks in a row are interpreted as a
single quotation mark, not as string delimiters or the empty
string.

Constants

3-12 Oracle TimesTen In-Memory Database SQL Reference

NationalCharacterString A character string compatible with NCHAR or NVARCHAR2
data types. National string constants are preceded by an
indicator consisting of either 'N' or 'n', and delimited by
single quotation marks. For example:

N'Here''s how!'

Two single quotation marks in a row are interpreted as a
single quotation mark.

The contents of a national string constant may consist of any
combination of:

■ ASCII characters

■ UTF-8 encoded Unicode characters

■ Escaped Unicode characters

ASCII characters and UTF-8 encoded characters are
converted internally to their corresponding UTF-16 format
Unicode equivalents.

Escaped Unicode characters are of the form \uxxxx, where
xxxx is the four hex-digit representation of the Unicode
character. For example:

N'This is an \u0061'

is equivalent to:

N'This is an a'

The \u itself can be escaped with another \. The sequence
\\u is always converted to \u. No other escapes are
recognized.

HexadecimalString A string of hexadecimal digits 0 - 9 and A - F (or a - f)
compatible with the BINARY, VARBINARY, CHAR and
VARCHAR2 data types. A HexadecimalString constant
must be prefixed with the characters "0x." For example:

0xFFFAB0880088343330FFAA7

or

0x000A001231

DateString A string of the format YYYY-MM-DD HH:MI:SS enclosed in
single quotation marks ('). For example:

'2007-01-27 12:00:00'

The YYYY field must have a 4-digit value. The MM and DD
fields must have 2-digit values. The only spaces allowed are
trailing spaces (after the day field). The range is from
'-4713-01-01' (January 1, 4712 BC) to '9999-12-31', (December
31, 9999). The time component is not required. For example:

'2007-01-27'

For TT_DATE data types, the string is of format YYYY-MM-DD
and ranges from '1753-01-01' to '9999-12-31'.

If you are using TimesTen type mode, see documentation
from previous releases of TimesTen for information about
DateString.

Constant Description

Constants

Expressions 3-13

DateLiteral Format: DATE DateString. For example:

DATE '2007-01-27' or DATE '2007-01-27 12:00:00'

For TT_DATE data types, use the literal TT_DATE. For
example:

TT_DATE '2007-01-27'.

Do not specify a time portion with the TT_DATE literal.

The DATE keyword is case-insensitive.

TimesTen also supports ODBC-date-literal syntax.

For example:

{d '2007-01-27'}.

Please refer to the Microsoft ODBC Programmer's Reference
and SDK Guide included with your release of TimesTen.

If you are using TimesTen type mode, for information on
DateLiteral, refer to documentation from previous
releases of TimesTen.

TimeString A string of the format HH:MM:SS enclosed in single
quotation marks ('). For example:

'20:25:30'

The range is '00:00:00' to '23:59:59', inclusive. Every
component must be two digits. The only spaces allowed are
trailing spaces (after the seconds field).

TimeLiteral Format: TIME TimeString. For example:

TIME '20:25:30'

The TIME keyword is case-insensitive.

Usage examples:

INSERT INTO timetable VALUES (TIME '10:00:00');

SELECT * FROM timetable WHERE col1 < TIME
'10:00:00';

TimesTen also supports ODBC-time-literal syntax.

For example:

{t '12:00:00'}

Constant Description

Constants

3-14 Oracle TimesTen In-Memory Database SQL Reference

TimestampString A string of the format YYYY-MM-DD
HH:MM:SS[.FFFFFFFFF] -enclosed in single quotation
marks('). The range is from '-4713-01-01' (January 1, 4712
BC) to '9999-12-31' (December 31, 9999). The year field
must be a 4-digit value. All other fields except for the
fractional part must be 2-digit values. The fractional field can
consist of 0 to 9 digits. For TT_TIMESTAMP data types, a
string of format YYYY-MM-DD HH:MM:SS[.FFFFFF]
enclosed in single quotation marks('). The range is from
'1753-01-01 00:00:00.000000' to '9999-12-31
23:59:59.999999'. The fractional field can consist of 0 to
6 digits.

If you have a CHAR column called C1, and want to enforce
the TIME comparison, you can do the following:

SELECT * FROM testable WHERE C1 = TIME '12:00:00'

In this example, each CHAR value from C1 is converted into
a TIME value before comparison, provided that values in C1
conform to the proper TIME syntax.

If you are using TimesTen type mode, for information on
TimestampString, refer to documentation from previous
releases of TimesTen.

TimestampLiteral Format: TIMESTAMP TimestampString

For example:

TIMESTAMP '2007-01-27 11:00:00.000000'

For TIMESTAMP data types, the fraction field supports from
0 to 9 digits of fractional seconds. For TT_TIMESTAMP data
types, the fraction field supports from 0 to 6 digits of
fractional seconds.

The TIMESTAMP keyword is case-insensitive.

Literal syntax can be used if you want to enforce
DATE/TIME/TIMESTAMP comparisons for CHAR and
VARCHAR2 data types.

TimesTen also supports ODBC timestamp literal syntax. For
example:

{ts '9999-12-31 12:00:00'}

If you are using TimesTen type mode, for information on
TimestampLiteral, refer to documentation from previous
releases of TimesTen.

IntervalLiteral Format: INTERVAL [+\-] CharacterString
IntervalQualifier.

For example INTERVAL '8' DAY

BINARY_FLOAT_INFINITY|

BINARY_DOUBLE_INFINITY

INF (positive infinity) is an IEEE floating-point value that is
compatible with the BINARY_FLOAT and BINARY_
DOUBLE data types. Use the constant values BINARY_
FLOAT_INFINITY or BINARY_DOUBLE_INFINITY to
represent positive infinity.

-BINARY_FLOAT_INFINITY|

-BINARY_DOUBLE_INFINITY

-INF (negative infinity) is an IEEE floating-point value that is
compatible with the BINARY_FLOAT and BINARY_
DOUBLE data types. Use the constant values -BINARY_
FLOAT_INFINITY and -BINARY_DOUBLE_INFINITY to
represent negative infinity.

Constant Description

Constants

Expressions 3-15

BINARY_FLOAT_NAN|

BINARY_DOUBLE_NAN

NaN ("not a number") is an IEEE floating-point value that is
compatible with the BINARY_FLOAT and BINARY_
DOUBLE data types. Use the constant values BINARY_
FLOAT_NAN or BINARY_DOUBLE_NAN to represent NaN
("not a number").

Constant Description

Format models

3-16 Oracle TimesTen In-Memory Database SQL Reference

Format models

A format model is a character literal that describes the format of datetime and numeric
data stored in a character string. When you convert a character string into a date or
number, a format model determines how TimesTen interprets the string.

Format models

Expressions 3-17

Number format models

Use number format models in the following functions:

■ In the TO_CHAR function to translate a value of NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE data type to VARCHAR2 data type.

■ In the TO_NUMBER function to translate a value of CHAR or VARCHAR2 data
type to NUMBER data type.

Number format elements
A number format model is composed of one or more number format elements. The
table lists the elements of a number format model. Negative return values
automatically contain a leading negative sign and positive values automatically
contain a leading space unless the format model contains the MI, S, or PR format
element.

The default american_america NLS language and territory setting is used.

Table 3–1 Number format elements

Element Example Description

, (comma) 9,999 Returns a comma in the specified position. You can specify
multiple commas in a number format model.

Restrictions

■ A comma element cannot begin a number format model.

■ A comma cannot appear to the right of the decimal
character or period in a number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified
position.

Restriction

You can specify only one period in a format model.

$ $9999 Returns value with leading dollar sign.

0 0999

9990

Returns leading zeros.

Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading
space if positive or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns a
zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number
when the integer part is zero (regardless of zeros in the format
model).

C C999 Returns in the specified position the ISO currency symbol (the
current value of the NLS_ISO_CURRENCY parameter).

D 99D99 Returns in the specified position the decimal character, which is
the current value of the NLS_NUMERIC_CHARACTER
parameter. The default is a period (.).

Restrictions

You can specify only one decimal character in a number format
model.

EEEE 9.9EEEE Returns a value in scientific notation.

Number format models

3-18 Oracle TimesTen In-Memory Database SQL Reference

G 9G999 Returns in the specified position the group separator (the current
value of the NLS_NUMERIC_CHARACTER parameter). You
can specify multiple group separators in a number format
model.

Restrictions

A group separator cannot appear to the right of a decimal
character or period in a number format model.

L L999 Returns in the specified position the local currency symbol (the
current value of the NLS_CURRENCY parameter).

MI 999MI Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing blank.

Restrictions

The MI format element can appear only in the last position of a
number format model.

PR 999PR Returns negative value in <angle brackets>.

Returns positive value with a leading and trailing blank.

Restrictions

The PR format element can appear only in the last position of a
number format model.

RN RN Returns a value as Roman numerals in uppercase.

rn rn Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

S S9999 Returns negative value with a leading minus sign (-).

Returns positive value with a leading plus sign (+).

S 9999S Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing plus sign (+).

Restrictions

The S format element can appear only in the first or last position
of a number format model.

TM TM The text minimum number format model returns (in decimal
output) the smallest number of characters possible. This element
is case insensitive.

The default is TM9, which returns the number in fixed notation
unless the output exceeds 64 characters. If the output exceeds 64
characters, then TimesTen automatically returns the number in
scientific notation.

Restrictions

■ You cannot precede this element with any other element.

■ You can follow this element only with one 9 or one E or (e),
but not with any combination of these. The following
statement returns an error:

SELECT TO_NUMBER (1234, 'TM9e') from DUAL;

U U9999 Returns in the specified position the euro (or other) dual
currency symbol (the current value of the NLS_DUAL_
CURRENCY parameter).

Table 3–1 (Cont.) Number format elements

Element Example Description

Format models

Expressions 3-19

V 999V99 Returns a value multiplied by 10n (and if necessary, rounds it
up), where n is the number of 9s after the V.

X XXXX Returns the hexadecimal value of the specified number of digits.
If the specified number is not an integer, then TimesTen rounds
it to an integer.

Restrictions

■ This element accepts only positive values or 0. Negative
values return an error.

■ You can precede this element only with 0 (which returns
leading zeros) or FM. Any other elements return an error. If
you specify neither 0 nor FM with X, then the return always
has a leading blank.

Table 3–1 (Cont.) Number format elements

Element Example Description

Datetime format models

3-20 Oracle TimesTen In-Memory Database SQL Reference

Datetime format models

Use datetime format models in the following functions:

■ In the TO_CHAR or TO_DATE functions to translate a character value that is in a
format other than the default format for a datetime value.

■ In the TO_CHAR function to translate a datetime value that is in a format other
than the default format into a string.

The total length of a datetime format model cannot exceed 22 characters.

The default american_america NLS language and territory setting is used.

Format models

Expressions 3-21

Datetime format elements

A datetime format model is composed of one or more datetime format elements.

Table 3–2 Datetime format elements

Element Description

-/,.;:"text" Punctuation and quoted text is reproduced in the result.

AD

A.D.

AD indicator with or without periods.

AM

A.M.

Meridian indicator with or without periods.

BC

B.C.

BC indicator with or without periods.

D Day of week (1-7).

DAY Name of day, padded with blanks to display width of widest name of
day.

DD Day of month (1-31).

DDD Day of year.

DL Returns a value in the long date format. In the default AMERICAN_
AMERICA locale, this is equivalent to specifying the format 'fmDay,
Month dd, yyyy'.

Restriction

Specify this format only with the TS element, separated by white space.

DS Returns a value in the short date format. In the default AMERICAN_
AMERICA locale, this is equivalent to specifying the format
'MM/DD/RRRR'.

Restriction

Specify this format only with the TS element, separated by white space.

DY Abbreviated name of day.

FM Returns a value with no leading or trailing blanks.

FX Requires exact matching between the character data and the format
model.

HH Hour of day (1-12).

HH24 Hour of day (0-23).

J Julian day: The number of days since January 1, 4712 BC. Numbers
specified with J must be integers.

MI Minute (0-59).

MM Month (01-12. January = 01).

MON Abbreviated name of month.

MONTH Name of month padded with blanks to display width of the widest
name of month.

RM Roman numeral month (I-XII. January = I).

RR Stores 20th century dates in the 21st century using only two digits.

Datetime format elements

3-22 Oracle TimesTen In-Memory Database SQL Reference

RRRR Rounds year. Accepts either 4-digit or 2-digit input. If 2-digit, provides
the same return as RR. If you do not want this functionality, then enter
the 4-digit year.

SS Second (0-59).

SSSSS Seconds past midnight (0-86399).

TS Returns a value in the short time format.

Restriction

Specify this format only with the DL or DS element, separated by white
space.

X Local radix character.

Example: 'HH:MI:SSXFF'.

Y,YYY Year with comma in this position.

YYYYSYYYY 4-digit year. S prefixes BC dates with a minus sign.

YYYYYY Last 3, 2, or 1 digit (s) of year.

Table 3–2 (Cont.) Datetime format elements

Element Description

Format models

Expressions 3-23

Format model for ROUND and TRUNC date functions

The table lists the format models you can use with the ROUND and TRUNC date
functions and the units to which they round and truncate dates. The default model
'DD' returns the date rounded or truncated to the day with a time of midnight.

Format mode Rounding or truncating unit

CC

SCC

One greater than the first two digits of a four-digit year

SYYYYYYYYYE
ARSYEARYYYY
YY

Year

IYYYIYIYI ISO Year

Q Quarter

MONTHMON
MMRM

Month

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the ISO year

W Same day of the week as the first day of the month

DDDDDJ Day

DAYDYD Starting day of the week

HHHH12HH24 Hour

MI Minute

Format model for TO_CHAR of TimesTen datetime data types

3-24 Oracle TimesTen In-Memory Database SQL Reference

Format model for TO_CHAR of TimesTen datetime data types

Use this format model when invoking the TO_CHAR function to convert a datetime
value of TT_TIMESTAMP or TT_DATE. In addition, use this format model when
invoking the TO_CHAR function to convert any numeric value other than NUMBER
or ORA_FLOAT.

■ If a numeric value does not fit in the specified format, TimesTen truncates the
value.

■ The format string cannot exceed 50 characters.

■ D always results in a decimal point. Its value cannot be changed with an NLS
parameter.

■ If a float with an absolute value less than 1e-126 or greater than 1e126 is
specified as input to the TO_CHAR function, TimesTen returns an error.

Format Description

DD Day of month (1-31)

MM Month (1-12)

MON Month (three character prefix)

MONTH Month (full name blank-padded to 9 characters)

YYYY Year (four digits)

Y,YYY Year (with comma as shown)

YYY Year (last three digits)

YY Year (last two digits)

Y Year (last digit)

Q Quarter

HH Hour (1-12)

HH12 Hour (1-12)

HH24 Hour (0-23)

MI Minute (0-59)

SS Second (0-59)

FF Fractions of a second to a precision of 6 digits

FFn Fractions of a second to the precision specified by n

AM Meridian indicator

A.M. Meridian indicator

PM Meridian indicator

P.M. Meridian indicator

- / , . ; : Punctuation to be output

"text" Text to be output

9 Digit

0 Leading/trailing zero

. Decimal point

Format models

Expressions 3-25

, Comma

EEEE Scientific notation

S Sign mode

B Blank mode. If there are no digits, the string is filled with blanks.

FM No-blank mode (Fill mode). If this element is used, trailing and/or
leading spaces are suppressed.

$ Leading dollar sign.

Format Description

ABS

3-26 Oracle TimesTen In-Memory Database SQL Reference

ABS

The ABS function returns the absolute value of Expression.

SQL syntax
ABS(Expression)

Parameters
ABS has the parameter:

Description
■ If Expression is of type TT_DECIMAL or NUMBER, the data type returned is

NUMBER with maximum precision and scale. Otherwise, ABS returns the same
data type as the numeric data type of Expression.

■ If the value of Expression is NULL, NULL is returned. If the value of the
Expression is -INF, INF is returned.

Examples
Create table abstest and define columns with type BINARY_FLOAT and TT_
INTEGER. Insert values -BINARY_FLOAT_INFINITY and -10. Call ABS to return the
absolute value. You see INF and 10 are the returned values:

Command> CREATE TABLE abstest (col1 BINARY_FLOAT, col2 TT_INTEGER);
Command> INSERT INTO abstest VALUES

(-BINARY_FLOAT_INFINITY, -10);
1 row inserted.
Command> SELECT ABS (col1) FROM abstest;
< INF >
1 row found.
Command> SELECT ABS (col2) FROM abstest;
< 10 >
1 row found.

Parameter Description

Expression Operand or column can be any numeric data type. Absolute value of
Expression is returned.

ADD_MONTHS

Expressions 3-27

ADD_MONTHS

The ADD_MONTHS function returns the date date plus integer months.

SQL syntax
ADD_MONTHS(date,integer)

Parameters
ADD_MONTHS has the parameters:

Description
■ The return type is always DATE regardless of the data type of date. Supported

data types are DATE and TIMESTAMP.

■ Data types TT_DATE and TT_TIMESTAMP are not supported.

■ If date is the last day of the month or if the resulting month has fewer days than
the day component of date, then the result is the last day of the resulting month.
Otherwise, the result has the same day component as date.

Examples
Call the ADD_MONTHS function to add 1 month to date January 31, 2007. The last
day of February is returned.

Command> SELECT ADD_MONTHS (DATE '2007-01-31', 1) FROM dual;
< 2007-02-28 00:00:00 >
1 row found.

ADD_MONTHS returns data type DATE if date is of type TIMESTAMP:

Command> DESCRIBE SELECT ADD_MONTHS (TIMESTAMP '2007-01-31
10:00:00', 1) FROM dual;

Prepared Statement:
 Columns:
 EXP DATE NOT NULL

Use the HR schema to select the first 5 rows of the employees table, showing
employee_id, last_name and hire_date. Create new table temp_hire_date
using the CREATE TABLE ... AS SELECT statement. Call ADD_MONTHS to add 23
months to the original hire_date.

Command> SELECT FIRST 5 employee_id, last_name, hire_date FROM employees;
< 100, King, 1987-06-17 00:00:00 >
< 101, Kochhar, 1989-09-21 00:00:00 >
< 102, De Haan, 1993-01-13 00:00:00 >
< 103, Hunold, 1990-01-03 00:00:00 >
< 104, Ernst, 1991-05-21 00:00:00 >
5 rows found.

Parameter Description

date date can be a datetime value or any value that can be implicitly converted
to DATE.

integer integer can be an integer or any value that can be implicitly converted to
an integer.

ADD_MONTHS

3-28 Oracle TimesTen In-Memory Database SQL Reference

Command> CREATE TABLE temp_hire_date (employee_id, last_name,
hire_date) AS SELECT FIRST 5 employee_id, last_name,
ADD_MONTHS (hire_date, 23) FROM employees;

5 rows inserted.
Command> SELECT * FROM temp_hire_date;
< 100, King, 1989-05-17 00:00:00 >
< 101, Kochhar, 1991-08-21 00:00:00 >
< 102, De Haan, 1994-12-13 00:00:00 >
< 103, Hunold, 1991-12-03 00:00:00 >
< 104, Ernst, 1993-04-21 00:00:00 >
5 rows found.

ASCIISTR

Expressions 3-29

ASCIISTR

The ASCIISTR takes as its argument, either a string or an expression that resolves to a
string, in any character set, and returns the ASCII version of the string in the database
character set. Non-ASCII characters are converted to Unicode escapes.

SQL syntax
ASCIISTR ([N]'String')

Parameters
ASCIISTR has the parameter:

Description
The ASCIISTR function allows you to see the representation of a string value that is
not in your database character set.

Examples
The following example invokes the ASCIISTR function passing as an argument the
string 'Aäa' in UTF-16 format. The ASCII version is returned in the WE8ISO8859P1
character set. The non-ASCII character ä is converted to Unicode encoding value:

Command> connect "dsn=test; ConnectionCharacterSet= WE8ISO8859P1";
Connection successful: DSN=test;UID=user1;DataStore=/datastore/user1/test;
DatabaseCharacterSet=WE8ISO8859P1;
ConnectionCharacterSet=WE8ISO8859P1;PermSize=32;TypeMode=0;
(Default setting AutoCommit=1)
Command> SELECT ASCIISTR (n'Aäa') FROM DUAL;
< A\00E4a >
1 row found.

Parameter Description

[N]'String' The string passed to the ASCIISTR function. The string can be in any
character set. The ASCII version of the string in the database character set is
returned. Specify N if you wish to pass the string in UTF-16 format.

CASE

3-30 Oracle TimesTen In-Memory Database SQL Reference

CASE

Specifies a conditional value. Both simple and searched case expressions are
supported. Case expression can be specified anywhere an expression can be and can
be used as often as needed.

Instead of using a series of if statements, case expression allows you to use a series of
conditions that return the appropriate values when the conditions are met. With CASE
expression, you can simplify queries and write more efficient code.

SQL syntax
The syntax for a searched CASE expression is:

CASE
{WHEN SearchCondition THEN Expression1}[…]
[ELSE Expression2]

END

The syntax for a simple CASE expression is:

CASE Expression
{WHEN CompExpression THEN Expression1}[…]
[ELSE Expression2]

END

Parameters
CASE has the parameters:

Description
CASE expression can not be specified in the value clause of an INSERT statement.

Examples
To specify a searched CASE statement that specifies the value of a color, use:

SELECT CASE
 WHEN color=1 THEN 'red'
 WHEN color=2 THEN 'blue'
 ELSE 'yellow'
END FROM cars;

To specify a simple CASE statement that specifies the value of a color, use:

Parameter Description

WHEN SearchCondition Specifies the search criteria. This clause cannot specify a
subquery.

WHEN CompExpression Specifies the operand to be compared.

Expression Specifies the first operand to be compared with each
CompExpression.

THEN Expression1 Specifies the resulting expression.

ELSE Expression2 If condition is not met, specifies the resulting expression. If
no ELSE clause is specified, TimesTen adds an ELSE NULL
clause to the expression.

CASE

Expressions 3-31

SELECT CASE color
 WHEN 1 THEN 'red'
 WHEN 2 THEN 'blue'
 ELSE 'yellow'
END FROM cars;

CAST

3-32 Oracle TimesTen In-Memory Database SQL Reference

CAST

Allows you to convert data of one type to another type. CAST can be used wherever a
constant can be used. CAST is useful in specifying the exact data type for an argument.
This is especially true for unary operators like '-' or functions with one operand like
TO_CHAR or TO_DATE.

A value can only be CAST to a compatible data type, with the exception of NULL.
NULL can be cast to any other data type. CAST is not needed to convert a NULL to the
desired target type in an insert select.

The following conversions are supported:

■ Numeric value to numeric or BCD (Binary Coded Decimal)

■ NCHAR to NCHAR

■ CHAR string to BINARY string or DATE, TIME or TIMESTAMP

■ BINARY string to BINARY or CHAR string

■ DATE, TIME or TIMESTAMP to CHAR

SQL syntax
CAST
({Expression | NULL} AS DataType)

Parameters
CAST has the parameters:

Description
■ CAST to a domain name is not supported.

■ Casting a selected value may cause the SELECT statement to take more time and
memory than a SELECT statement without a CAST expression.

Examples
INSERT INTO t1 VALUES(TO_CHAR(CAST(? AS REAL)));
SELECT CONCAT(x1, CAST (? AS CHAR(10))) FROM t1;
SELECT * FROM t1 WHERE CAST (? AS INT)=CAST(? AS INT);

Parameter Description

Expression Specifies the value to be converted.

AS DataType Specifies the resulting data type.

CHR

Expressions 3-33

CHR

The CHR function returns the character having the specified binary value in the
database character set.

SQL syntax
CHR(n)

Parameters
CHR has the parameter:

Description
■ For single-byte character sets, if n >256, then TimesTen returns the binary value of

n mod 256.

■ For multibyte character sets, n must resolve to one code point. Invalid code points
are not validated. If you specify an invalid code point, the result is indeterminate.

Examples
The following example is run on an ASCII-based machine with the WE8ISO8859P1
character set.

Command> SELECT CHR(67)||CHR(65)||CHR(84) FROM DUAL;
< CAT >
1 row found.

On an EBCDIC-based machine with the character set WE8EBCDIC1047, the preceding
example would have to be modified to the following:

Command> SELECT CHR(195)||CHR(193)||CHR(227) FROM DUAL;
< CAT >
1 row found.

Parameter Description

n The binary value in the database character set. The character having this
binary value is returned. The result is of type VARCHAR2.

Note: When you use the CHR function, the code is not portable
between ASCII- and EBCDIC- based machine architectures.

CEIL

3-34 Oracle TimesTen In-Memory Database SQL Reference

CEIL

The CEIL function returns the smallest integer greater than or equal to Expression.

SQL syntax
CEIL(Expression)

Parameters
CEIL has the parameter:

Description
■ If Expression is of type TT_DECIMAL or NUMBER, the data type returned is

NUMBER with maximum precision and scale. Otherwise, CEIL returns the same
data type as the numeric data type of Expression.

■ If the value of Expression is NULL, NULL is returned. If the value of
Expression is -INF, INF, or NaN, the value returned is -INF, INF, or NaN
respectively.

Examples
SUM the commission_pct for employees in the employees table, and then call
CEIL to return the smallest integer greater than or equal to the value returned by SUM.
You see the value returned by the SUM function is 7.8 and the value returned by the
CEIL function is 8.

Command> SELECT SUM (commission_pct) FROM employees;
< 7.8 >
1 row found.
Command> SELECT CEIL (SUM (commission_pct)) FROM employees;
< 8 >
1 row found.

Parameter Description

Expression Operand or column can be any numeric data type.

COALESCE

Expressions 3-35

COALESCE

The COALESCE function returns the first non-null expression in the expression list.
If all occurrences of expression evaluate to NULL, then the function returns NULL.

SQL syntax
COALESCE(Expression1, Expression2 [,...])

Parameters
COALESCE has the parameters:

Description
■ This function is a generalization of the NVL function.

■ Use COALESCE as a variation of the CASE expression. For example,

COALESCE (Expression1, Expression2)

is equivalent to:

CASE WHEN Expression1 IS NOT NULL THEN Expression1
ELSE Expression2

END

Examples
The example illustrates the use of the COALESCE expression. The COALESCE
expression is used to return the commission_pct for the first 10 employees with
manager_id = 100. If the commission_pct is NOT NULL, then the original value
for commission_pct is returned. If commission_pct is NULL, then 0 is returned.

Command> SELECT FIRST 10 employee_id, COALESCE (commission_pct, 0) FROM employees
WHERE manager_id = 100;
< 101, 0 >
< 102, 0 >
< 114, 0 >
< 120, 0 >
< 121, 0 >
< 122, 0 >
< 123, 0 >
< 124, 0 >
< 145, .4 >
< 146, .3 >
10 rows found.

Parameter Description

Expression1,
Expression2
[,...]

The expressions in the expression list. The first non-null expression in the
expression list is returned.

Each expression is evaluated in order and there must be at least 2
expressions.

CONCAT

3-36 Oracle TimesTen In-Memory Database SQL Reference

CONCAT

The CONCAT function concatenates one character string with another to form a new
character string.

SQL syntax
CONCAT(Expression1, Expression2)

Parameters
CONCAT has the parameters:

Description
■ CONCAT returns Expression1 concatenated with Expression2.

■ The type of Expression1 and Expression2 must be compatible.

■ If Expression2 is NULL, CONCAT returns Expression1. If Expression1 is
NULL, CONCAT returns Expression2.

■ If both Expression1 and Expression2 are NULL, CONCAT returns NULL.

■ The return type of CONCAT depends on the types of Expression1 and
Expression2. The following table summarizes how the return type is
determined.

■ The treatment of NCHAR and NVARCHAR2 is similar. If one of the operands is of
varying length, then the result is of varying length. Otherwise the result is of a
fixed length.

■ The concatenation of CHAR, NCHAR, VARCHAR2, and NVARCHAR2 types are
supported. The result type of character types concatenated with ncharacter types
is ncharacter types.

Examples
The following example concatenates first names and last names.

Command> SELECT CONCAT(CONCAT(first_name, ' '), last_name), salary FROM employees;
< Steven King, 24000 >
< Neena Kochhar, 17000 >
< Lex De Haan, 17000 >
< Alexander Hunold, 9000 >

Parameter Description

Expression1 A CHAR, VARCHAR2, NCHAR or NVARCHAR2 expression.

Expression2 A CHAR, VARCHAR2, NCHAR or NVARCHAR2 expression.

Expression1 Expression2 CONCAT

CHAR(m) CHAR(n) CHAR(m+n)

CHAR(m) VARCHAR2(n) VARCHAR2(m+n)

VARCHAR2(m) CHAR(n) VARCHAR2(m+n)

VARCHAR2(m) VARCHAR2(n) VARCHAR2(m+n)

CONCAT

Expressions 3-37

...
107 rows found.

The following example concatenates column id with column id2. In this example, the
result type is NCHAR(40).

Command> CREATE TABLE cat (id CHAR (20), id2 NCHAR (20));
Command> INSERT INTO cat VALUES ('abc', 'def');
1 row inserted.
Command> SELECT CONCAT (id,id2) FROM cat;
< abc def >
1 row found.

The description of the | | operator is in the section "Expression specification" on
page 3-3.

DECODE

3-38 Oracle TimesTen In-Memory Database SQL Reference

DECODE

The DECODE function compares an expression to each search value one by one. If the
expression is equal to the search value, then the result value is returned. If no match is
found, then the default value (if specified) is returned. Otherwise NULL is returned.

SQL syntax
DECODE(Expression, {SearchValue, Result [,...])} [,Default])

Parameters
DECODE has the parameters:

Description
If an expression is NULL, then the NULL expression equals a NULL search value.

Examples
The following example invokes the DECODE function. In the locations table, if the
column country_id is equal to 'IT', then the function returns 'Italy.' If the country_
id is equal to 'JP', then the function returns 'Japan.' If the country_id is equal to 'US,'
then 'United States' is returned. If the country_id is not equal to 'IT' or 'JP' or 'US,'
then the function returns 'Other.'

Command> SELECT location_id,
> DECODE (country_id, 'IT', 'Italy',
> 'JP', 'Japan',
> 'US', 'United States',
> 'Other')
> FROM locations WHERE location_id < 2000;
LOCATION_ID, EXP
< 1000, Italy >
< 1100, Italy >
< 1200, Japan >
< 1300, Japan >
< 1400, United States >
< 1500, United States >
< 1600, United States >
< 1700, United States >
< 1800, Other >
< 1900, Other >
10 rows found.

Parameter Description

Expression The expression that is compared to the search value.

SearchValue An expression is compared to one or more search values.

Result If the expression is equal to a SearchValue, then the specified Result value is
returned.

Default If no match is found, the default value is returned. Default is optional. If
Default is not specified and no match is found, then NULL is returned.

EXTRACT

Expressions 3-39

EXTRACT

The EXTRACT function extracts and returns the value of a specified datetime field
from a datetime or interval value expression as a NUMBER data type. This function
can be useful for manipulating datetime field values in very large tables.

If you are using TimesTen type mode, for information on the EXTRACT function, refer
to documentation from previous releases of TimesTen.

SQL syntax
EXTRACT (DateTimeField FROM IntervalExpression | DateTimeExpression)

Parameters
EXTRACT has the following parameters:

Description
■ Some combinations of DateTime field and DateTime or interval value

expression result in ambiguity. In these cases, TimesTen returns UNKNOWN.

■ The field you are extracting must be a field of the IntervalExpression or
DateTimeExpression. For example, you can extract only YEAR, MONTH, and
DAY from a DATE value. Likewise, you can extract HOUR, MINUTE or SECOND
only from the TIME, DATE, or TIMESTAMP data type.

■ The fields are extracted into a NUMBER value.

Examples
The following example extracts the second field out of the interval result
sysdate-t1.createtime

SELECT EXTRACT(SECOND FROM sysdate-t1.createtime) FROM t1;

The following example extracts the second field out of sysdate from the system table
DUAL.

Command> SELECT EXTRACT (SECOND FROM sysdate) FROM dual;
< 20 >
1 row found.

Parameter Description

DateTimeField The field to be extracted from IntervalExpression or
DateTimeExpression. Accepted fields are YEAR, MONTH, DAY,
HOUR, MINUTE or SECOND.

IntervalExpression An interval result.

DateTimeExpression A datetime expression. For example, TIME, DATE, TIMESTAMP.

FLOOR

3-40 Oracle TimesTen In-Memory Database SQL Reference

FLOOR

The FLOOR function returns the largest integer equal to or less than Expression.

SQL syntax
FLOOR (Expression)

Parameters
FLOOR has the parameter:

Description
■ If Expression is of type TT_DECIMAL or NUMBER, the data type returned is

NUMBER with maximum precision and scale. Otherwise, FLOOR returns the
same data type as the numeric data type of Expression.

■ If the value of Expression is NULL, NULL is returned. If the value of
Expression is -INF, INF, or NaN, the value returned is -INF, INF, or NaN
respectively.

Examples
Sum the commission_pct for employees in the employees table. Then call FLOOR
to return the largest integer equal to or less than the value returned by SUM. You see
the value returned by the SUM function is 7.8 and the value returned by the FLOOR
function is 7:

Command> SELECT SUM (commission_pct) FROM employees;
< 7.8 >
1 row found.
Command> SELECT FLOOR (SUM (commission_pct)) FROM employees;
< 7 >
1 row found.

Parameter Description

Expression Operand or column can be any numeric data type.

GREATEST

Expressions 3-41

GREATEST

The GREATEST function returns the greatest of the list of one or more expressions.

SQL syntax
GREATEST (Expression [,...])

Parameters
GREATEST has the parameter:

Description
■ Each expression in the list must be from the same data type family or date

subfamily. Data type families include numeric, character and date. The date family
includes four subfamilies: date family, TIME family, TT_DATE family, and TT_
TIMESTAMP family. As an example, do not specify a numeric expression and a
character expression in the list of expressions. Similarly, do not specify a date
expression and a TT_TIMESTAMP expression in the list of expressions.

■ If the first Expression is numeric, then TimesTen determines the argument with
the highest numeric precedence, implicitly converts the remaining arguments to
that data type before the comparison, and returns that data type.

■ If the first Expression is in the character family, and the operand or column is
of type CHAR or VARCHAR2, the data type returned is VARCHAR2. If the
operand or column is of type NCHAR or NVARCHAR2, the data type returned is
NVARCHAR2. The returned data type length is equal to the length of the largest
expression. If one operand or column is of type CHAR or VARCHAR2 and the
second operand or column is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2.

■ TimesTen uses nonpadded comparison semantics for data types from the character
family.

■ If the first expression is in the date family, the data type returned is the same data
type as the first expression.

■ If any of the expressions is NULL, the result is NULL.

■ If the first Expression is in the character family, and the operand or column is
of type TT_CHAR or TT_VARCHAR, the data type returned is TT_VARCHAR. If
the operand or column is of type TT_NCHAR or TT_NVARCHAR, the data type
returned is TT_NVARCHAR. The returned data type length is equal to the largest
of the expressions.

■ You can specify a maximum of 256 expressions.

Use the GREATEST function to return the string with the greatest value:

Command> SELECT GREATEST ('GREAT', 'GREATER', 'GREATEST') FROM dual;
< GREATEST >
1 row found.

Parameter Description

Expression
[,...]

List of one or more expressions that is evaluated to determine the greatest
expression value. Operand or column can be numeric, character, or date.
Each expression in the list must be from the same data type family.

GREATEST

3-42 Oracle TimesTen In-Memory Database SQL Reference

Use the GREATEST function to return the numeric expression with the greatest value.
In this example, BINARY_DOUBLE is the data type with the highest numeric
precedence, so arguments are implicitly converted to BINARY_DOUBLE before the
comparison and the data type BINARY_DOUBLE is returned:

Command> SELECT GREATEST (10, 10.55, 10.1D) FROM dual;
< 10.5500000000000 >
1 row found.

Use the DESCRIBE command to confirm the data type returned is BINARY_DOUBLE:

Command> DESCRIBE SELECT GREATEST (10, 10.55, 10.1D) FROM dual;

Prepared Statement:
 Columns:
 EXP BINARY_DOUBLE NOT NULL

Use the GREATEST function to return the DATE expression with the greatest value.
DATE and TIMESTAMP are in the same date family.

Command> SELECT GREATEST (DATE '2007-09-30',
TIMESTAMP '2007-09-30:10:00:00') FROM dual;

< 2007-09-30 10:00:00 >
1 row found.

Attempt to use the GREATEST function to return the greatest value in the list of TT_
DATE and TT_TIMESTAMP expressions. You see an error because TT_DATE and TT_
TIMESTAMP are in different date subfamilies and cannot be used in the same list of
expressions.

Command> SELECT GREATEST (TT_DATE '2007-09-30', TT_TIMESTAMP
'2007-09-30:10:00:00') FROM dual;

2817: Invalid data type TT_TIMESTAMP for argument 2 for function GREATEST
The command failed.

Use the GREATEST function to return the TT_DATE expression with the greatest
value.

Command> SELECT GREATEST (TT_DATE '2007-09-30',
TT_DATE '2007-09-29', TT_DATE '2007-09-28') FROM dual;

< 2007-09-30 >
1 row found.

LEAST

Expressions 3-43

LEAST

The LEAST function returns the smallest of the list of one or more expressions.

SQL syntax
LEAST (Expression [,...])

Parameters
LEAST has the parameter:

Description
■ Each expression in the list must be from the same data type family or date

subfamily. Data type families include numeric, character and date. The date family
includes four subfamilies: date family, TIME family, TT_DATE family, and TT_
TIMESTAMP family. As an example, do not specify a numeric expression and a
character expression in the list of expressions. Similarly, do not specify a date
expression and a TT_TIMESTAMP expression in the list of expressions.

■ If the first Expression is numeric, then TimesTen determines the argument with
the highest numeric precedence, implicitly converts the remaining arguments to
that data type before the comparison, and returns that data type.

■ If the first Expression is in the character family, and the operand or column is
of type CHAR or VARCHAR2, the data type returned is VARCHAR2. If the
operand or column is of type NCHAR or NVARCHAR2, the data type returned is
NVARCHAR2. The returned data type length is equal to the length of the largest
expression. If one operand or column is of type CHAR or VARCHAR2 and the
second operand or column is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2.

■ TimesTen uses nonpadded comparison semantics for data types from the character
family.

■ If the first expression is in the date family, the data type returned is the same data
type as the first expression.

■ If any of the expressions is NULL, the result is NULL.

■ If the first Expression is in the character family, and the operand or column is
of type TT_CHAR or TT_VARCHAR, the data type returned is TT_VARCHAR. If
the operand or column is of type TT_NCHAR or TT_NVARCHAR, the data type
returned is TT_NVARCHAR. The returned data type length is equal to the largest
of the expressions.

■ You can specify a maximum of 256 expressions.

Use the LEAST function to return the string with the smallest value:

Command> SELECT LEAST ('SMALL','SMALLER','SMALLEST') FROM dual;
< SMALL >
1 row found.

Parameter Description

Expression
[,...]

List of one or more expressions that is evaluated to determine the smallest
expression value. Operand or column can be numeric, character, or date.
Each expression in the list must be from the same data type family.

LEAST

3-44 Oracle TimesTen In-Memory Database SQL Reference

Use the LEAST function to return the numeric expression with the smallest value. In
this example, NUMBER is the data type with the highest numeric precedence, so
arguments are implicitly converted to NUMBER before the comparison and the data
type NUMBER is returned. First describe the table leastex to see the data types
defined for columns col1 and col2. Then SELECT * from leastex to see the data.
Then invoke the LEAST function.

Command> DESCRIBE leastex;

Table SAMPLEUSER.LEASTEX:
 Columns:
 COL1 NUMBER (2,1)
 COL2 TT_BIGINT

1 table found.
(primary key columns are indicated with *)
Command> SELECT * FROM leastex;
< 1.1, 1 >
1 row found.
Command> SELECT LEAST (Col2,Col1) from leastex;
< 1 >
1 row found.

Use the DESCRIBE command to confirm the data type returned is NUMBER:

Command> DESCRIBE SELECT LEAST (Col2,Col1) from leastex;

Prepared Statement:
 Columns:
 EXP NUMBER

Use the LEAST function to return the DATE expression with the smallest value. DATE
and TIMESTAMP are in the same date family.

Command> SELECT LEAST (DATE '2007-09-17',
TIMESTAMP '2007-09-17:10:00:00') FROM dual;

< 2007-09-17 00:00:00 >
1 row found.

Attempt to use the LEAST function to return the smallest value in the list of TT_DATE
and TT_TIMESTAMP expressions. You see an error because TT_DATE and TT_
TIMESTAMP are in different date subfamilies and cannot be used in the same list of
expressions.

Command> SELECT LEAST (TT_DATE '2007-09-17',
 TT_TIMESTAMP '2007-09-17:01:00:00') FROM dual;

2817: Invalid data type TT_TIMESTAMP for argument 2 for function LEAST
The command failed.

Use the LEAST function to return the TIME expression with the smallest value.

Command> SELECT LEAST (TIME '13:59:59', TIME '13:59:58',
TIME '14:00:00') FROM dual;

< 13:59:58 >
1 row found.

LOWER and UPPER

Expressions 3-45

LOWER and UPPER

The LOWER function converts expressions of type CHAR, NCHAR, VARCHAR2 or
NVARCHAR2 to lowercase. The UPPER function converts expressions of type CHAR,
NCHAR, VARCHAR2 or NVARCHAR2 to uppercase. Character semantics is
supported for CHAR and VARCHAR2 types. The data type of the result is the same as
the data type of the expression.

SQL syntax
{UPPER | LOWER} (Expression1)

Parameters
LOWER and UPPER have the following parameter:

Description
LOWER(?) and UPPER(?) are not supported, but you can combine it with the CAST
operator. For example:

LOWER(CAST(? AS CHAR(30)))

Command> SELECT LOWER (last_name) FROM employees
WHERE employee_id = 100;
< king >
1 row found.

Parameter Description

Expression1 An expression which is converted to lowercase (using LOWER) or
uppercase (using UPPER).

LPAD

3-46 Oracle TimesTen In-Memory Database SQL Reference

LPAD

The LPAD function returns Expression1, left-padded to length n characters with the
sequence of characters in Expression2. This function is useful for formatting the
output of a query.

SQL syntax
LPAD (Expression1, n [,Expression2])

Parameters
LPAD has the parameters:

Description
■ If Expression1 is of type CHAR or VARCHAR2, the data type returned is

VARCHAR2. If Expression1 is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2.

■ The returned data type length is equal to n if n is a constant. Otherwise, the
maximum result length of 8300 is returned.

■ You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR
for Expression1 and Expression2. If Expression1 is of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expression1 is of
type TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

■ For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:

– If either Expression1 or Expression2 is NULL, the result is NULL. If n is
less than or equal to 0, then the result is NULL.

■ For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

– If either Expression1 or Expression2 is not NULL and if n is less than or
equal to 0, then the result is the empty string.

Use LPAD function to left-pad the string 'LPAD Function' with string 'DEMO-ONLY'
plus 2 spaces. Replicate string DEMO-ONLY plus 2 spaces 3 times.

Command> SELECT LPAD ('LPAD Function', 46, 'DEMO-ONLY ') FROM dual;
< DEMO-ONLY DEMO-ONLY DEMO-ONLY LPAD Function >
1 row found.

Call LPAD function with length of -1. You see NULL is returned.

Command> SELECT LPAD ('abc', -1, 'a') FROM dual;
< <NULL> >

Parameter Description

Expression1 CHAR, VARCHAR2, NCHAR OR NVARCHAR2 operand or column to
be left-padded. If Expression1 is longer than n, then LPAD returns the
portion of Expression1 that fits in n.

n Length of characters returned by LPAD function. Must be a NUMBER
integer or a value that can be implicitly converted to a NUMBER integer.

Expression2 Sequence of characters left-padded to Expression1. If you do not specify
Expression2, then the default is a single blank. Operand or column can
be of type CHAR, VARCHAR2, NCHAR, or NVARCHAR2.

LPAD

Expressions 3-47

1 row found.

LTRIM

3-48 Oracle TimesTen In-Memory Database SQL Reference

LTRIM

The LTRIM function removes from the left end of Expression1 all of the characters
contained in Expression2. TimesTen begins scanning Expression1 from its first
character and removes all characters that appear in Expression2 until reaching a
character not in Expression2 and returns the result.

SQL syntax
LTRIM (Expression1 [,Expression2])

Parameters
LTRIM has the parameters:

Description
■ If Expression1 is of type CHAR or VARCHAR2, the data type returned is

VARCHAR2. If Expression1 is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2. The returned data type length is equal to the data type
length of Expression1.

■ If Expression1 is a data type defined with CHAR length semantics, the returned
length is expressed in CHAR length semantics.

■ If either Expression1 or Expression2 is NULL, the result is NULL.

■ You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR
for Expression1 and Expression2. If Expression1 is of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expression1 is of
type TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

■ If Expression1 is of type CHAR or VARCHAR2 and Expression2 is of type
NCHAR or NVARCHAR2, then Expression2 is demoted to CHAR or
VARCHAR2 before LTRIM is invoked. The conversion of Expression2 could be
lost. If the trim character of Expression2 is not in the database character set,
then the query may produce unexpected results.

■ For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:

– If all the characters in Expression1 are removed by the LTRIM function,
then the result is NULL.

■ For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

– If all the characters in Expression1 are removed by the LTRIM function,
then the result is the empty string.

Parameter Description

Expression1 The CHAR, VARCHAR2, NCHAR or NVARCHAR2 operand or column to
be trimmed. If Expression1 is a character literal, then enclose it in single
quotes.

Expression2 Optional expression used for trimming Expression1. If Expression2 is a
character literal, then enclose it in single quotes. If you do not specify
Expression2, it defaults to a single blank. Operand or column can be of
type CHAR,VARCHAR2, NCHAR, or NVARCHAR2.

LTRIM

Expressions 3-49

Examples
Call the LTRIM function to remove left-most 'x' and 'y' from string. LTRIM removes
individual occurrences of 'x' and 'y' not pattern 'xy'.

Command> SELECT LTRIM ('xxxyyyxyxyLTRIM Example', 'xy') FROM dual;
< LTRIM Example >
1 row found.

Call the LTRIM function to remove YYYY-MM-DD from SYSDATE. Call TO_CHAR to
convert SYSDATE to VARCHAR2.

Command> SELECT LTRIM (TO_CHAR(SYSDATE), '2007-08-21') FROM dual;
< 22:54:39 >
1 row found.

Call LTRIM to remove all characters from Expression1. In the first example, the data
type is CHAR, so NULL is returned. In the second example, the data type is TT_
CHAR, so the empty string is returned.

Command> CREATE TABLE ltrimtest (col1 CHAR (4), col2 TT_CHAR (4));
Command> INSERT INTO ltrimtest VALUES ('ABBB','ABBB');
1 row inserted.
Command> SELECT LTRIM (col1, 'AB') FROM ltrimtest;
< <NULL> >
1 row found.
Command> SELECT LTRIM (col2, 'AB') FROM ltrimtest;
< >
1 row found.

MOD

3-50 Oracle TimesTen In-Memory Database SQL Reference

MOD

Returns the remainder of an INTEGER expression divided by a second INTEGER
expression.

SQL syntax
MOD(Expression1, Expression2)

Parameters
MOD has the following parameters:

Description
■ MOD returns the remainder of Expression1 divided by Expression2.

■ If Expression2 is 0, then MOD returns Expression1.

■ If either Expression1 or Expression2 is NULL, MOD returns NULL.

■ MOD is treated as a binary arithmetic operation, so the return type is determined
according to the rules specified in Chapter 1, "Data Types".

■ The MOD function behaves differently from the classic mathematical modulus
function when one of the operands is negative. The following table illustrates this
difference:

The following example tests if the value of the expression m is divisible by the value of
expression n.

SELECT m, n FROM test WHERE MOD(m, n) = 0;

Parameter Description

Expression1 An INTEGER expression.

Expression2 An INTEGER expression.

M N Classic Modulus MOD(M,N)

11 3 2 2

11 -3 -1 2

-11 3 1 -2

-11 -3 -2 -2

NCHR

Expressions 3-51

NCHR

The NCHR function returns the character having the specified Unicode value.

SQL syntax
NCHR(n)

Parameters
NCHR has the parameter:

The following example returns the NCHAR character 187:

Command> SELECT NCHR(187) FROM dual;
< > >
1 row found.

Parameter Description

n The specified Unicode value. The character having this Unicode value is
returned. The result is of type NVARCHAR2.

NLSSORT

3-52 Oracle TimesTen In-Memory Database SQL Reference

NLSSORT

Returns the sort key value for the given string.

SQL syntax
NLSSORT (String [,'NLS_SORT = SortName'])

Parameters
NLSSORT has the following parameters:

Description
■ The returned sort key value is of type VARBINARY.

■ You can create a linguistic index for linguistic comparisons.

Examples
The following example illustrates sorting and comparison operations based on a
linguistic sort sequence rather than on the binary value of the string. In addition, the
example shows the same results can be obtained by using the ALTER SESSION... SET
NLS_SORT statement.

Command> CREATE TABLE nsortdemo (name VARCHAR2 (15));
Command> INSERT INTO nsortdemo VALUES ('Gaardiner');
1 row inserted.
Command> INSERT INTO nsortdemo VALUES ('Gaberd');
1 row inserted.
Command> INSERT INTO nsortdemo VALUES ('Gaasten');
1 row inserted.
Command> # Perform Sort
Command> SELECT * FROM nsortdemo ORDER BY name;
< Gaardiner >
< Gaasten >
< Gaberd >
3 rows found.
Command> #Use function to perform sort
Command> SELECT * FROM nsortdemo ORDER BY NLSSORT (name, 'NLS_SORT = XDanish');
< Gaberd >
< Gaardiner >
< Gaasten >
3 rows found.
Command># comparison operation
Command> SELECT * FROM nsortdemo where Nnme > 'Gaberd';
0 rows found.

Parameter Description

String Supported data types for String are CHAR, VARCHAR2, NCHAR and
NVARCHAR2. Given the String, NLSSORT returns the sort key value used
to sort the String.

['NLS_SORT =
SortName']

SortName is either the linguistic sort sequence or BINARY. If you omit this
parameter, then the default sort sequence for your session is used. Append to
the SortName the suffix -ai for accent-insensitive sorting or -ci for
case-insensitive sorting. For more information on acceptable linguistic
SortName values, see "Supported linguistic sorts" in Oracle TimesTen
In-Memory Database Operations Guide.

NLSSORT

Expressions 3-53

Command> #Use function in comparison operation
Command> SELECT * FROM nsortdemo WHERE NLSSORT (name, 'NLS_SORT = XDanish') >
> NLSSORT ('Gaberd', 'NLS_SORT = XDanish');
< Gaardiner >
< Gaasten >
2 rows found.
Command> #Use ALTER SESSION to obtain the same results
Command> ALTER SESSION SET NLS_SORT = 'XDanish';
Command> SELECT * FROM nsortdemo ORDER BY name;
< Gaberd >
< Gaardiner >
< Gaasten >
3 rows found.
Command> SELECT * FROM nsortdemo where name > 'Gaberd';
< Gaardiner >
< Gaasten >
2 rows found.

The following example creates a linguistic index:

Command> CREATE INDEX danishindex ON nsortdemo (NLSSORT (name, 'NLS_SORT =
XDanish'));
Command> INDEXES N%;
Indexes on table USER1.NSORTDEMO:
DANISHINDEX: non-unique T-tree index on columns:
NLSSORT(NAME,'NLS_SORT = XDanish')

1 index found.
1 table found.

NUMTODSINTERVAL

3-54 Oracle TimesTen In-Memory Database SQL Reference

NUMTODSINTERVAL

Converts a number or expression to an INTERVAL DAY TO SECOND type.

SQL syntax
NUMTODSINTERVAL (Expression1, IntervalUnit)

Parameters
NUMTODSINTERVAL has the parameters:

Examples
Example using NUMTODSINTERVAL with SYSDATE:

Command> SELECT SYSDATE + NUMTODSINTERVAL(20,'SECOND') FROM dual;
< 2007-01-28 09:11:06 >

Parameter Description

Expression1 The argument can be any NUMBER value or an expression that can be
implicitly converted to a NUMBER value.

IntervalUnit One of the string constants: 'DAY', 'HOUR', 'MINUTE', or 'SECOND'.

NUMTOYMINTERVAL

Expressions 3-55

NUMTOYMINTERVAL

Converts a number or expression to an INTERVAL YEAR TO MONTH type.

SQL syntax
NUMTOYMINTERVAL (Expression1, 'IntervalUnit')

Parameters
NUMTOYMINTERVAL has the parameters:

Examples
An example using NUMTOYMINTERVAL:

Command> SELECT SYSDATE + NUMTOYMINTERVAL(1,'MONTH') FROM dual;
< 2007-02-28 09:23:28 >
1 row found.

Parameter Description

Expression1 The argument can be any NUMBER value or an expression that can be
implicitly converted to a NUMBER value.

IntervalUnit One of the string constants 'YEAR' or 'MONTH'.

NVL

3-56 Oracle TimesTen In-Memory Database SQL Reference

NVL

The NVL function replaces a null value with a second value.

SQL syntax
NVL(Expression1, Expression2)

Parameters
NVL has the parameters:

Description
■ The data types of Expression1 and Expression2 must be compatible.

■ If Expression1 is NULL, the NVL function returns Expression2. If
Expression1 is NOT NULL, the NVL function returns Expression1.

■ The NVL function can be used in the WHERE or HAVING clause of SELECT,
UPDATE, or DELETE statements and in the SELECT list of a SELECT statement.

Examples
This example checks for null values of commission_pct and replaces them with
'Not Applicable' for employees whose last name start with B.

Command> SELECT last_name, NVL(TO_CHAR(commission_pct), 'Not Applicable')
 > FROM employees
 > WHERE last_name LIKE 'B%'
 > ORDER BY last_name;
< Baer, Not Applicable >
< Baida, Not Applicable >
< Banda, .1 >
< Bates, .15 >
< Bell, Not Applicable >
< Bernstein, .25 >
< Bissot, Not Applicable >
< Bloom, .2 >
< Bull, Not Applicable >
9 rows found.

Parameter Description

Expression1 The expression whose values are to be tested for NULL.

Expression2 The alternate value to use if the value of Expression1 is NULL.

POWER

Expressions 3-57

POWER

The POWER function returns base raised to the exponent power. The base and
exponent can be any numbers, but if the base is negative, the exponent must be
an integer.

SQL syntax
POWER (Base, Exponent)

Parameters
POWER has the parameters:

Description
If either Base or Exponent is of type BINARY_FLOAT or BINARY_DOUBLE, the
data type returned is BINARY_DOUBLE. If the Base is of type NUMBER or TT_
DECIMAL, and the Exponent is not of type BINARY_FLOAT or BINARY_DOUBLE,
the date type returned is NUMBER with maximum precision and scale. If Base is one
of the TT* numeric types (TT_BIGINT, TT_INTEGER, TT_SMALLINT, or TT_
TINYINT), the data type returned is BINARY_DOUBLE.

Example
Use the POWER function to return the commission_pct squared for the employee
with employee_id equal to 145.

Command> SELECT employee_id,commission_pct FROM employees WHERE employee_id = 145;
< 145, .4 >
1 row found.

Command> SELECT POWER (commission_pct,2) FROM employees WHERE employee_id = 145;
< .16 >
1 row found.

Parameter Description

Base Operand or column can be any numeric type. Power returns this value
raised to Exponent power.

Exponent Operand or column can be any numeric type. If base is negative, exponent
must be an integer.

ROUND (date)

3-58 Oracle TimesTen In-Memory Database SQL Reference

ROUND (date)

Returns date rounded to the unit specified by the format model fmt. The value
returned is of type DATE. If you do not specify fmt, then date is rounded to the
nearest day.

SQL syntax
ROUND(date [,fmt])

Parameters
ROUND (date) has the parameters:

Description
■ Date can be of type DATE or TIMESTAMP. The data type returned is DATE.

■ Data types TT_DATE and TT_TIMESTAMP are not supported.

■ For the supported format models to use in fmt, see "Format model for ROUND
and TRUNC date functions" on page 3-23.

Examples
Round date to the first day of the following year by specifying 'YEAR' as the format
model:

Command> SELECT ROUND (DATE '2007-08-25','YEAR') FROM dual;
< 2008-01-01 00:00:00 >
1 row found.

Omit fmt. Specify date as type TIMESTAMP with a time of 13:00:00. Date is rounded
to nearest day:

Command> SELECT ROUND (TIMESTAMP '2007-08-16 13:00:00') FROM dual;
< 2007-08-17 00:00:00 >
1 row found.

Parameter Description

date The date that is rounded. Must resolve to a date value.

If you do not specify fmt, then date is rounded to the nearest day.

[,fmt] The format model rounding unit. Specify either a constant or a parameter for
fmt.

ROUND (expression)

Expressions 3-59

ROUND (expression)

The ROUND function returns Expression1 rounded to Expression2 places to the
right of the decimal point.

SQL syntax
ROUND (Expression1 [,Expression2])

Parameters
ROUND has the parameters:

Description
■ If you omit Expression2, and Expression1 is of type TT_DECIMAL, the

data type returned is NUMBER with maximum precision and scale. Otherwise, if
you omit Expression2, the data type returned is the same as the numeric data
type of Expression1.

■ If you specify Expression2, the data type returned is NUMBER with maximum
precision and scale.

■ If Expression1 is of type BINARY_FLOAT or BINARY_DOUBLE, the value of
Expression1 is rounded to the nearest even value. Otherwise, the value of
Expression1 is rounded away from 0 (for example, to x+1 when x.5 is positive
and to x-1 when x.5 is negative).

Examples
Round a number 2 places to the right of the decimal point.

Command> SELECT ROUND (15.5555,2) FROM dual;
< 15.56 >
1 row found.

Round a number to the left of the decimal point by specifying a negative number for
Expression2.

Command> SELECT ROUND (15.5555,-1) FROM dual;
< 20 >
1 row found.

Round a floating point number. Floating point numbers are rounded to nearest even
value. Contrast this to rounding an expression of type NUMBER where the value is
rounded up (for positive values).

Command> SELECT ROUND (1.5f), ROUND (2.5f) FROM dual;
< 2.00000000000000, 2.00000000000000 >
1 row found.
Command> SELECT ROUND (1.5), ROUND (2.5) FROM dUAL;

Parameter Description

Expression1 Operand or column can be any numeric type.

Expression2 Operand or column that indicates how many places to round. Can be
negative to round off digits left of the decimal point. If you omit
Expression2, then Expression1 is rounded to 0 places. Must be an
integer.

ROUND (expression)

3-60 Oracle TimesTen In-Memory Database SQL Reference

< 2, 3 >
1 row found.

RPAD

Expressions 3-61

RPAD

The RPAD function returns Expression1, right-padded to length n characters with
Expression2, replicated as many times as necessary. This function is useful for
formatting the output of a query.

SQL syntax
RPAD (Expression1, n [,Expression2])

Parameters
RPAD has the parameters:

Description
■ If Expression1 is of type CHAR or VARCHAR2, the data type returned is

VARCHAR2. If Expression1 is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2.

■ The returned data type length is equal to n if n is a constant. Otherwise, the
maximum result length of 8300 is returned.

■ You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR
for Expression1 and Expression2. If Expression1 is of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expression1 is of
type TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

■ For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:

– If either Expression1 or Expression2 is NULL, the result is NULL. If n is
less than or equal to 0, then the result is NULL.

■ For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

– If either Expression1 or Expression2 is not NULL and if n is less than or
equal to 0, then the result is the empty string.

Examples
Concatenate first_name and last_name from the employees table. Call the RPAD
function to return first_name right-padded to length 12 with spaces and call RPAD
a second time to return last_name right-padded to length 12 with spaces. Select first
5 rows.

Command> SELECT FIRST 5 CONCAT (RPAD (first_name,12),
RPAD (last_name,12)) FROM employees
ORDER BY first_name, last_name;

Parameter Description

Expression1 CHAR, VARCHAR2, NCHAR OR NVARCHAR2 operand or column to be
right-padded. If Expression1 is longer than n, then RPAD returns the
portion of Expression1 that fits in n.

n Length of characters returned by RPAD function. Must be a NUMBER
integer or a value that can be implicitly converted to a NUMBER integer.

Expression2 CHAR, VARCHAR2, NCHAR OR NVARCHAR2 operand or column to be
right-padded to Expression1. If you do not specify Expression2, then
the default is a single blank.

RPAD

3-62 Oracle TimesTen In-Memory Database SQL Reference

< Adam Fripp >
< Alana Walsh >
< Alberto Errazuriz >
< Alexander Hunold >
< Alexander Khoo >
5 rows found.

Call the RPAD function to return last_name right-padded to length 20 characters
with the dot ('.') character. Use the employees table and select first 5 rows.

Command> SELECT FIRST 5 RPAD (last_name,20,'.') FROM employees
ORDER BY last_name;

< Abel................ >
< Ande................ >
< Atkinson............ >
< Austin.............. >
< Baer................ >
5 rows found.

RTRIM

Expressions 3-63

RTRIM

The RTRIM function removes from the right end of Expression1 all of the characters
contained in Expression2. TimesTen scans Expression1 backwards from its last
character and removes all characters that appear in Expression2 until reaching a
character not in Expression2 and then returns the result.

SQL syntax
RTRIM (Expression1 [,Expression2])

Parameters
RTRIM has the parameters:

Description
■ If Expression1 is of type CHAR or VARCHAR2, the data type returned is

VARCHAR2. If Expression1 is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2. The returned data type length is equal to the data type
length of Expression1.

■ If Expression1 is a data type defined with CHAR length semantics, the returned
length is expressed in CHAR length semantics.

■ If either Expression1 or Expression2 is NULL, the result is NULL.

■ You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR
for Expression1 and Expression2. If Expression1 is of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expression1 is of
type TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

■ If Expression1 is of type CHAR or VARCHAR2 and Expression2 is of type
NCHAR or NVARCHAR2, then Expression2 is demoted to CHAR or
VARCHAR2 before RTRIM is invoked. The conversion of Expression2 could be
lost. If the trim character of Expression2 is not in the database character set,
then the query may produce unexpected results.

■ For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:

– If all the characters in Expression1 are removed by the RTRIM function,
then the result is NULL.

■ For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

– If all the characters in Expression1 are removed by the RTRIM function,
then the result is the empty string.

Parameter Description

Expression1 The CHAR, VARCHAR2, NCHAR or NVARCHAR2 operand or column to
be trimmed. If Expression1 is a character literal, then enclose it in quotes.

Expression2 Optional expression used for trimming Expression1. If Expression2 is a
character literal, then enclose it in single quotes. If you do not specify
Expression2, it defaults to a single blank. Operand or column can be of
type CHAR,VARCHAR2, NCHAR, or NVARCHAR2.

RTRIM

3-64 Oracle TimesTen In-Memory Database SQL Reference

Examples
The following example trims the trailing spaces from col1 in table rtrimtest.

Command> CREATE TABLE rtrimtest (col1 VARCHAR2 (25));
Command> INSERT INTO rtrimtest VALUES ('abc ');
1 row inserted.
Command> SELECT * FROM rtrimtest;
< abc >
1 row found.
Command> SELECT RTRIM (col1) FROM rtrimtest;
< abc >
1 row found.

Call the RTRIM function to remove right-most 'x' and 'y' from string. RTRIM removes
individual occurrences of 'x' and 'y' not pattern 'xy'.

Command> SELECT RTRIM ('RTRIM Examplexxxyyyxyxy', 'xy') FROM dual;
< RTRIM Example >
1 row found.

Call RTRIM to remove all characters from Expression1. In the first example, the data
type is CHAR, so NULL is returned. In the second example, the data type is TT_
CHAR, so the empty string is returned.

Command> CREATE TABLE rtrimtest (col1 CHAR (4), col2 TT_CHAR (4));
Command> INSERT INTO rtrimtest VALUES ('BBBA', 'BBBA');
1 row inserted.
Command> SELECT RTRIM (col1, 'AB') FROM rtrimtest;
< <NULL> >
1 row found.
Command> SELECT RTRIM (col2, 'AB') FROM rtrimtest;
< >
1 row found.

SIGN

Expressions 3-65

SIGN

The SIGN function returns the sign of Expression.

SQL syntax
SIGN (Expression)

Parameters
SIGN has the parameter:

Description
■ If Expression is of type NUMBER or TT_DECIMAL, the data type returned is

NUMBER with maximum precision and scale. Otherwise, the data type returned is
TT_INTEGER.

– For numeric types that are not binary floating-point numbers, the sign is:

– -1 if the value of Expression is <0

– 0 if the value of Expression is = 0

– 1 if the value of Expression is > 0

■ For binary floating-point numbers (BINARY_FLOAT and BINARY_DOUBLE), this
function returns the sign bit of the number. The sign bit is:

– -1 if the value of Expression is <0

– +1 if the value of Expression is >= 0 or the value of Expression is equal
to NaN.

Examples
These examples illustrate use of the SIGN function with different data types. Table
signex has been created and the columns have been defined with different data
types. First, describe the table signex to see the data types of the columns. Then select
each column to retrieve values for that column. Use the SIGN function to return the
sign for the column.

Command> DESCRIBE signex;

Table SAMPLEUSER.SIGNEX:
 Columns:
 COL1 TT_INTEGER
 COL2 TT_BIGINT
 COL3 BINARY_FLOAT
 COL4 NUMBER (3,2)

1 table found.
(primary key columns are indicated with *)
Command> SELECT col1 FROM signex;
< 10 >
< -10 >

Parameter Description

Expression Operand or column can be any numeric data type.

SIGN

3-66 Oracle TimesTen In-Memory Database SQL Reference

< 0 >
3 rows found.
Command> SELECT SIGN (col1) FROM signex;
< 1 >
< -1 >
< 0 >
3 rows found.
Command> SELECT col2 FROM signex;
< 0 >
< -3 >
< 0 >
3 rows found.
Command> SELECT SIGN (col2) from signex;
< 0 >
< -1 >
< 0 >
3 rows found.
Command> SELECT col3 FROM signex;
< 3.500000 >
< -3.560000 >
< NAN >
3 rows found.
Command> SELECT SIGN (col3) from signex;
< 1 >
< -1 >
< 1 >
3 rows found.
Command> SELECT col4 FROM signex;
< 2.2 >
< -2.2 >
< 0 >
3 rows found.
Command> SELECT SIGN (col4) from signex;
< 1 >
< -1 >
< 0 >
3 rows found.

SQRT

Expressions 3-67

SQRT

The SQRT function returns the square root of Expression.

SQL syntax
SQRT(Expression)

Parameters
SQRT has the parameter:

Description
■ If Expression is of type NUMBER or TT_DECIMAL, the data type returned is

NUMBER with maximum precision and scale. If Expression is of type BINARY_
FLOAT, the data type returned is BINARY_FLOAT. Otherwise, the data type
returned is BINARY_DOUBLE.

■ If Expression is of type NUMBER or TT_DECIMAL, the value of Expression
cannot be negative.

■ If Expression resolves to a binary floating-point number (BINARY_FLOAT or
BINARY_DOUBLE):

– If the value of the Expression is > = 0, the result is positive.

– If the value of the Expression is = -0, the result is -0.

– If the value of the Expression is < 0, the result is NaN.

Examples
Use SQRT function to return the square root of the absolute value of -10. Then cast the
value as BINARY_FLOAT.

Command> SELECT CAST (SQRT (ABS (-10)) AS BINARY_FLOAT) FROM dual;
< 3.162278 >
1 row found.

Parameter Description

Expression Operand or column can be any numeric data type.

String functions

3-68 Oracle TimesTen In-Memory Database SQL Reference

String functions

TimesTen supports these string functions in SELECT statements:

■ SUBSTR

■ INSTR

■ LENGTH

A selected value that specifies a string function causes the SELECT result to be
materialized. This causes overhead in both time and space.

String functions

Expressions 3-69

SUBSTR

Returns a CHAR, VARCHAR2 or NVARCHAR2 that represents a substring of a CHAR
or NCHAR string. The returned substring is of a specified number of characters,
beginning from a designated starting point, relative to either the beginning or end of
the string.

SQL syntax
{SUBSTR | SUBSTRB | SUBSTR4}=(char, m, n)

Parameters
SUBSTR has the parameters:

Description
SUBSTR calculates lengths using characters as defined by character set. SUBSTRB uses
bytes instead of characters. SUBSTR4 uses UCS4 code points.

Examples
In the first 5 rows of employees, select the first three characters of last_name:

SELECT FIRST 5 SUBSTR(last_name,1,3) FROM employees;
< Kin >
< Koc >
< De >
< Hun >
< Ern >
5 rows found.

In the first 5 rows of employees, select the last five characters of last_name:

SELECT FIRST 5 SUBSTR(last_name,-5,5) FROM employees;
< <NULL> >
< chhar >
< Haan >
< unold >
< Ernst >
5 rows found.

Parameter Description

char The string for which this function returns a substring If char is a CHAR
string, the result is a CHAR or VARCHAR2 string. If char is a NCHAR
string, the result is a NVARCHAR2 string.

m The position at which to begin the substring. If m is positive, the first
character of the returned string is m characters from the beginning of the
string specified in char. Otherwise it is m characters from the end of the
string. If ABS(m) is bigger than the length of the character string, a NULL
value is returned.

n The number of characters to be included in the substring. If n is omitted, all
characters to the end of the string specified in char are returned. If n is less
than 1 or if char, m or n is NULL, NULL is returned.

INSTR

3-70 Oracle TimesTen In-Memory Database SQL Reference

INSTR

Determines the first position, if any, at which one string occurs within another. If the
substring does not occur in the string, then 0 is returned. The position returned is
always relative to the beginning of CharExpr2. INSTR returns type NUMBER.

If you are using TimesTen type mode, for information on the INSTR function, refer to
documentation from previous releases of TimesTen.

SQL syntax
{INSTR | INSTRB | INSTR4} (CharExpr2, CharExp1 [,m[,n]])

Parameters
INSTR has the parameters:

Description
INSTR calculates strings using characters as defined by character set. INSTRB uses
bytes instead of characters. INSTR4 uses UCS4 code points.

Examples
The following example uses INSTR to determine the position at which the substring
'ing' occurs in the string 'Washington':

Command> SELECT INSTR ('Washington', 'ing') FROM dual;
< 5 >
1 row found.

Parameter Description

CharExpr1 The substring to be found in string CharExpr2. If CharExpr1 does not
occur in CharExpr2, then zero is returned. If either string is of length zero,
NULL is returned.

CharExpr2 The string to be searched to find the position of CharExpr1.

m The optional position at which to begin the search. If m is specified as zero,
the result is zero. If m is positive, the search begins at the CharExpr2+m. If m
is negative, the search begins m characters from the end of CharExpr2.

n If n is specified it must be a positive value and the search returns the position
of the nth occurrence of CharExpr1

String functions

Expressions 3-71

LENGTH

Returns the length of a given character string in an expression. LENGTH returns type
NUMBER.

If you are using TimesTen type mode, for information on the LENGTH function, refer
to documentation from previous releases of TimesTen.

SQL syntax
{LENGTH|LENGTHB|LENGTH4} (CharExpr)

Parameters
LENGTH has the parameter:

Description
The LENGTH functions return the length of CharExpr. LENGTH calculates the
length using characters as defined by the character set. LENGTHB uses bytes rather
than characters. LENGTH4 uses UCS4 code points.

Examples
To determine the length of the string 'William':

Command> SELECT LENGTH('William') FROM dual;
< 7 >
1 row found.

Parameter Description

CharExpr The string for which to return the length.

SYS_CONTEXT

3-72 Oracle TimesTen In-Memory Database SQL Reference

SYS_CONTEXT

Returns information about the current session.

The data type of the return value is VARCHAR2.

SQL syntax
SYS_CONTEXT('namespace', 'parameter' [, length])

Parameters
SYS_CONTEXT has the parameters:

These are descriptions of the supported values for parameter:

Parameter ‘Description

namespace Value: USERENV

Other values result in a return of NULL.

parameter Supported values:

■ AUTHENTICATION_METHOD

■ CURRENT_USER

■ CURRENT_USERID

■ IDENTIFICATION_TYPE

■ LANG

■ LANGUAGE

■ NLS_SORT

■ SESSION_USER

■ SESSION_USERID

length Number between 1 and 4000 bytes.

Parameter ‘Description

AUTHENTICATION_
METHOD

Returns the method of authentication for these types of users:

■ Local database user authenticated by password

■ External user authenticated by the operating system

CURRENT_USER The name of the database user whose privileges are currently
active. This may change during the duration of a session to
reflect the owner of any active definer's rights object. When no
definer's rights object is active, CURRENT_USER returns the
same value as SESSION_USER. When used directly in the body
of a view definition, this returns the user that is executing the
cursor that is using the view. It does not respect views used in
the cursor as being definer's rights.

CURRENT_USERID The identifier of the database user whose privileges are
currently active

SYS_CONTEXT

Expressions 3-73

Description
The data type of the return value is VARCHAR2.

Examples
SELECT SYS_CONTEXT('USERENV', 'CURRENT_USER') FROM dual;
< TTUSER >
1 row found.

SELECT SYS_CONTEXT('USERENV', 'LANGUAGE') FROM dual;
< AMERICAN_AMERICA.AL32UTF8 >
1 row found.

SELECT SYS_CONTEXT('USERENV', 'IDENTIFICATION_TYPE') FROM dual;
< EXTERNAL >
1 row found.

IDENTIFICATION_TYPE Returns the way the user was created in the database.
Specifically, it reflects the IDENTIFIED clause in the
CREATE/ALTER USER syntax. In the list that follows, the
syntax used during user creation is followed by the
identification type returned:

■ IDENTIFIED BY password: LOCAL

■ IDENTIFIED EXTERNALLY: EXTERNAL

LANG The ISO abbreviation for the language name, a shorter form than
the existing 'LANGUAGE' parameter.

LANGUAGE The language and territory currently used by your session, along
with the database character set, in this form:

language_territory.characterset

NLS_SORT Binary or linguistic sort.

SESSION_USER The name of the database user at logon. This value remains the
same throughout the duration of the session.

SESSION_USERID The identifier of the database user at logon.

Parameter ‘Description

SYSDATE and GETDATE

3-74 Oracle TimesTen In-Memory Database SQL Reference

SYSDATE and GETDATE

Returns the date in the format YYYY-MM-DD HH:MM:SS. The date represents the
local current date and time, which is determined by the system on which the statement
is executed.

If you are using TimesTen type mode, for information on SYSDATE, refer to
documentation from previous releases of TimesTen.

SQL syntax
SYSDATE | GETDATE()

Parameters
The SYSDATE and GETDATE functions have no parameters.

Description
■ SYSDATE and GETDATE perform identically. SYSDATE is compatible with Oracle

syntax, and GETDATE is compatible with Microsoft SQL Server syntax.

■ SYSDATE and GETDATE have no arguments, and return a DATE value.

■ The SYSDATE or GETDATE value is only retrieved during execution.

■ Any required changes to the date (to incorporate a different time zone or Daylight
Savings Time, for example) must occur at the system level. The date cannot be
altered using SYSDATE or GETDATE.

■ The SYSDATE and GETDATE functions return the DATE data type. The DATE
format is 'YYYY-MM-DD HH:MM:SS'.

■ SYSDATE and GETDATE are built-in functions and can be used anywhere a date
expression may be used. They can be used in a INSERT...SELECT projection list, a
WHERE clause or to insert values. They cannot be used with a SUM or AVG
aggregate (operands must be numeric) or with a COUNT aggregate (column
names are expected).

■ SYSDATE and GETDATE return the same DATE value in a single SQL statement
context.

■ The literals TT_SYSDATE and ORA_SYSDATE are supported. TT_SYSDATE
returns the TT_TIMESTAMP data type. ORA_SYSDATE returns the DATE data
type.

Examples
In this example, invoking SYSDATE returns the same date and time for all rows in the
table:

Command> SELECT SYSDATE FROM dual;
< 2006-09-03 10:33:43 >
1 row found.

This example invokes SYSDATE to insert the current data and time into column
datecol:

Command> CREATE TABLE t (datecol DATE);
Command> INSERT INTO t VALUES (SYSDATE);
1 row inserted.

SYSDATE and GETDATE

Expressions 3-75

Command> SELECT * FROM t;
< 2006-09-03 10:35:50 >
1 row found.

In this example, GETDATE inserts the same date value for each new row in the table,
even if the query takes several seconds.

INSERT INTO t1 SELECT GETDATE(), col1
FROM t2 WHERE ...;

TO_CHAR is used with SYSDATE to return the date from table dual:

Command> SELECT TO_CHAR (SYSDATE) FROM dual;
< 2006-09-03 10:56:35 >
1 row found.

This example invokes TT_SYSDATE to return the TT_TIMESTAMP data type and then
invokes ORA_SYSDATE to return the DATE data type:

Command> SELECT tt_sysdate FROM dual;
< 2006-10-31 20:02:19.440611 >
1 row found.
Command> SELECT ora_sysdate FROM dual;
< 2006-10-31 20:02:30 >
1 row found.

TO_CHAR

3-76 Oracle TimesTen In-Memory Database SQL Reference

TO_CHAR

The TO_CHAR function converts a DATE, TIMESTAMP or numeric input value to a
VARCHAR2.

If you are using TimesTen type mode, for information on the TO_CHAR function, refer
to documentation from previous releases of TimesTen.

SQL syntax
TO_CHAR (Expression1[, Expression2 [, Expression3]])

Parameters
TO_CHAR has the parameters:

Description
■ TO_CHAR supports different datetime format models depending on the data type

specified for the expression. For information on the datetime format model used
for TO_CHAR of data type DATE or TIMESTAMP, see "Datetime format models"
on page 3-20. For information on the datetime format model used for TO_CHAR
of data type TT_DATE or TT_TIMESTAMP, see "Format model for ROUND and
TRUNC date functions" on page 3-23.

■ TO_CHAR supports different number format models depending on the numeric
data type specified for the expression. For information on the number format
model used for TO_CHAR of data type NUMBER or ORA_FLOAT, see "Number
format models" on page 3-17. For information on the number format model used
for TO_CHAR of all other numeric data types, see "Format model for ROUND and
TRUNC date functions" on page 3-23.

Examples
SELECT FIRST 5 first_name,
 TO_CHAR (hire_date, 'MONTH DD, YYYY'),
 TO_CHAR (salary, ’$999999.99’)
 FROM employees;
< Steven, JUNE 17, 1987, $24000.00 >
< Neena, SEPTEMBER 21, 1989, $17000.00 >
< Lex, JANUARY 13, 1993, $17000.00 >
< Alexander, JANUARY 03, 1990, $9000.00 >
< Bruce, MAY 21, 1991, $6000.00 >
5 rows found.

SELECT TO_CHAR(-0.12,'$B99.9999') FROM dual;
< -$.1200 >
1 row found.

Parameter ‘Description

Expression1 A DATE, TIMESTAMP or numeric expression.

Expression2 The format string. If omitted, TimesTen uses the default date format
(YYYY-MM-DD).

Expression3 A CHAR or VARCHAR2 expression to specify the NLS parameter which is
currently ignored.

TO_CHAR

Expressions 3-77

SELECT TO_CHAR(-12, 'B99999PR') FROM dual;
< 12 >
1 row found.

SELECT TO_CHAR(-12,'FM99999') FROM dual;
< -12 >
1 row found.

SELECT TO_CHAR(1234.1,'9,999.999') FROM dual;
< 1,234.100 >
1 row found.

TO_DATE

3-78 Oracle TimesTen In-Memory Database SQL Reference

TO_DATE

The TO_DATE function converts a CHAR or VARCHAR2 argument to a value of
DATE data type

If you are using TimesTen type mode, for information on the TO_DATE function, refer
to documentation from previous releases of TimesTen.

SQL syntax
TO_DATE (Expression1[, Expression2 [, Expression3]])

Parameters
TO_DATE has the parameters:

Description
You can use a datetime format model with the TO_DATE function. For more
information on datetime format models, see "Datetime format models" on page 3-20.

Examples
Command> SELECT TO_DATE ('1999, JAN 14', 'YYYY, MON DD') FROM dual;
< 1999-01-14 00:00:00 >
1 row found.

Command> SELECT TO_CHAR(TO_DATE('1999-12:23','YYYY-MM:DD')) FROM dual;
< 1999-12-23 00:00:00 >
1 row found.

Command> SELECT TO_CHAR(TO_DATE('12-23-1997 10 AM:56:20',
'MM-DD-YYYY HH AM:MI:SS'),'MONTH,DD YYYY HH:MI-SS') FROM dual;
< DECEMBER ,23 1997 10:56-20 >
1 row found.

Parameter Description

Expression1 A CHAR or VARCHAR2 expression.

Expression2 The format string. This expression is usually required. It is optional only
when Expression1 is in the default date format YYYY-MM-DD HHMMSS.

Expression3 A CHAR or VARCHAR2 expression to specify the NLS parameter which is
currently ignored.

TO_NUMBER

Expressions 3-79

TO_NUMBER

Converts an expression whose value is of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, BINARY_FLOAT or BINARY_DOUBLE to a value of NUMBER type.

SQL syntax
TO_NUMBER (Expression[, format])

Parameters
TO_NUMBER has the parameters:

Description
You can use a number format model with the TO_NUMBER function. For more
information on number format models, see "Number format models" on page 3-17.

Examples
Command> SELECT TO_NUMBER ('100.00', '999D99') FROM dual;
< 100 >
1 row found.

Command> SELECT TO_NUMBER ('1210.73', '9999.99') FROM dual;
< 1210.73 >
1 row found.

Parameter Description

Expression The expression to be converted.

format If specified, the format is used to convert Expression to a value of
NUMBER type. The format consists of a format string that identifies the
number format model. The format string can be either a constant or a
parameter.

TRIM

3-80 Oracle TimesTen In-Memory Database SQL Reference

TRIM

The TRIM function trims leading or trailing characters (or both) from a character
string.

SQL syntax
There are four valid syntax options for TRIM:

■ You can specify one of the TRIM qualifiers (LEADING or TRAILING or BOTH)
with the Trim_character:

TRIM (LEADING|TRAILING|BOTH Trim_character FROM Expression)

■ You can specify one of the TRIM qualifiers (LEADING or TRAILING or BOTH)
without the Trim_character:

TRIM (LEADING|TRAILING|BOTH FROM Expression)

■ You can specify the Trim_character without one of the TRIM qualifiers:

TRIM (Trim_character FROM Expression)

■ You can specify the Expression without a qualifier or a Trim_character:

TRIM (Expression)

Parameters
TRIM has the parameters:

Parameter Description

TRIM (

LEADING | TRAILING |
BOTH

[Trim_character]

FROM

Expression)

LEADING | TRAILING| BOTH are qualifiers to TRIM function.
LEADING removes all leading instances of Trim_character
from Expression. TRAILING removes all trailing instances of
Trim_character from Expression. BOTH removes leading
and trailing instances of Trim_character from Expression.

Trim_character is optional. If specified, it represents the
CHAR, VARCHAR2, NCHAR or NVARCHAR2 operand or
column used for trimming Expression. Must be only one
character. If you do not specify Trim_character, it defaults to a
single blank. If Trim_character is a character literal, then
enclose it in single quotes.

FROM is required.

Expression is the CHAR, VARCHAR2, NCHAR or
NVARCHAR2 operand or column to be trimmed. If Expression
is a character literal, then enclose it in single quotes.

TRIM

Expressions 3-81

Description
■ If you specify the LEADING qualifier, TRIM removes any leading characters equal

to Trim_character from Expression.

■ If you specify the TRAILING qualifier, TRIM removes any trailing characters equal
to Trim_character from Expression.

■ If you specify the BOTH qualifier (or no qualifier), TRIM removes leading and
trailing characters equal to Trim_character from Expression.

■ If you specify only Expression, then TRIM removes leading and trailing blank
spaces.

■ If Expression is of type CHAR or VARCHAR2, the data type returned is
VARCHAR2. If Expression is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2. The returned data type length is equal to the data type
length of Expression.

■ If Expression is a data type defined with CHAR length semantics, the returned
length is expressed in CHAR length semantics.

■ If either Trim_character or Expression is NULL, the result is NULL.

■ You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR
for Trim_character and Expression. If Expression is of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expression is of
type TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

■ If Trim_character is of type NCHAR or NVARCHAR2 and Expression is of
type CHAR or VARCHAR2, then Trim_character is demoted to CHAR or
VARCHAR2 before TRIM is invoked. The conversion of Trim_character could
be lost. If Trim_character is not in the database character set, then the query
may produce unexpected results.

■ For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:

TRIM (

Trim_character

FROM

Expression)

Removes both leading and trailing instances of Trim_character
from Expression.

Trim_character is the CHAR, VARCHAR2, NCHAR or
NVARCHAR2 operand or column used for trimming
Expression. Must be only one character. If Trim_character is
a character literal, then enclose it in single quotes.

FROM must follow Trim_character. Assumes LEADING |
TRAILING | BOTH qualifiers have not been specified.

Expression is the CHAR, VARCHAR2, NCHAR or
NVARCHAR2 operand or column to be trimmed. If Expression
is a character literal, then enclose it in single quotes.

TRIM (

Expression)

If you specify Expression (without a qualifier or Trim_
character), then leading and trailing blank spaces are removed
from Expression.

Expression is the CHAR, VARCHAR2, NCHAR or
NVARCHAR2 operand or column to be trimmed. If Expression
is a character literal, then enclose it in single quotes.

Parameter Description

TRIM

3-82 Oracle TimesTen In-Memory Database SQL Reference

– If all the characters in Expression are removed by the TRIM function, then
the result is NULL.

■ For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

– If all the characters in Expression are removed by the TRIM function, then
the result is the empty string.

Examples
Use TRIM function with qualifier to remove Trim_character '0' from Expression
'0000TRIM Example0000':

Command> SELECT TRIM (LEADING '0' FROM '0000TRIM Example0000') FROM dual;
< TRIM Example0000 >
1 row found.
Command> SELECT TRIM (TRAILING '0' FROM '0000TRIM Example0000') FROM dual;
< 0000TRIM Example >
1 row found.
Command> SELECT TRIM (BOTH '0' FROM '0000TRIM Example0000') FROM dual;
< TRIM Example >
1 row found.

Use TRIM function with qualifier to remove blank spaces. Do not specify a Trim_
character. Default value for Trim_character is blank space:

Command> SELECT TRIM (LEADING FROM ' TRIM Example ') FROM dual;
< TRIM Example >
1 row found.
Command> SELECT TRIM (TRAILING FROM ' TRIM Example ') FROM dual;
< TRIM Example >
1 row found.
Command> SELECT TRIM (BOTH FROM ' TRIM Example ') FROM dual;
< TRIM Example >
1 row found.

Use TRIM function with Trim_character '0'. Do not specify a qualifier. Leading and
trailing '0's are removed from Expression '0000TRIM Example0000':

Command> SELECT TRIM ('0' FROM '0000TRIM Example0000') FROM dual;
< TRIM Example >
1 row found.

Use TRIM function without a qualifier or Trim_character. Leading and trailing
spaces are removed.

< TRIM Example >
1 row found.
Command> SELECT TRIM (' TRIM Example ') FROM dual;

TRUNC (date)

Expressions 3-83

TRUNC (date)

Returns date with the time portion of the day truncated to the unit specified by the
format model fmt. The value returned is of type DATE. If you do not specify fmt,
then date is truncated to the nearest day.

SQL syntax
TRUNC (date [,fmt])

Parameters
TRUNC (date) has the parameters:

Description
For the permitted format models to use in fmt, see "Format model for ROUND and
TRUNC date functions" on page 3-23.

Examples
Command> SELECT TRUNC (TO_DATE ('27-OCT-92','DD-MON-YY'),'YEAR') FROM dual;
< 2092-01-01 00:00:00 >
1 row found.

Parameter Description

date The date that is truncated. Specify the DATE data type for date. The
function returns data type DATE with the time portion of the day truncated
to the unit specified by the format model. If you do not specify fmt, the date
is truncated to the nearest day. An error is returned if you do not specify the
DATE data type.

[,fmt] The format model truncating unit. Specify either a constant or a parameter
for fmt.

TRUNC (expression)

3-84 Oracle TimesTen In-Memory Database SQL Reference

TRUNC (expression)

Returns a number truncated to a certain number of decimal places.

SQL syntax
TRUNC (Expression [,m])

Parameters
TRUNC has the parameters:

Examples
SELECT TRUNC (15.79,1) FROM dual;
< 15.7 >
1 row found.

SELECT TRUNC (15.79,-1) FROM dual;
< 10 >
1 row found.

Parameter Description

Expression The Expression to truncate. Operands must be of type NUMBER. An error
is returned if operands are not of type NUMBER. The value returned is of
type NUMBER.

[,m] The number of decimal places to truncate to. If m is omitted, then the number
is truncated to 0 places. The value of m can be negative to truncate (make
zero) m digits left of the decimal point.

TT_HASH

Expressions 3-85

TT_HASH

The TT_HASH function returns the hash value of an expression or list of expressions.
This value is the value that is used by a hash index.

SQL syntax
TT_HASH(Expression [,...])

Parameters
TT_HASH has the parameter:

Description
■ Each expression must have a known data type and must be non-nullable. The hash

value of the expression depends on both the value of the expression and its type.
For example, TT_HASH of an TT_INTEGER with value 25 may be different from
TT_HASH of a NUMBER or BINARY_DOUBLE with value 25. If you specify a list
of expressions, the TT_HASH result depends on the order of the expressions in the
list.

■ Since constants and expressions that are not simple column references are subject
to internal typing rules, over which applications have no control, the best way to
ensure that TT_HASH computes the desired value for expressions that are not
simple column references is to CAST the expression to the desired type.

■ The result type of TT_HASH is TT_INTEGER in 32-bit mode and TT_BIGINT in 64
bit mode.

■ TT_HASH can be used in a SQL statement anywhere an expression can be used.
For example, TT_HASH can be used in a SELECT list, a WHERE or HAVING
clause, an ORDER BY clause, or a GROUP BY clause.

■ The output of error messages, trace messages, and ttAXactAdmin display the
hash value as a signed decimal so that the value matches TT_HASH output.

Examples
The following query finds the set of rows whose primary key columns hash to a given
hash value:

SELECT * FROM t1
WHERE TT_HASH(pkey_col1, pkey_col2, pkey_col3) = 12345678;

Parameter Description

Expression
[,...]

One or more expressions to be used to determine the hash value of the
expression or list of expressions.

UID

3-86 Oracle TimesTen In-Memory Database SQL Reference

UID

This function returns an integer (TT_INTEGER) that uniquely identifies the session
user.

Examples
SELECT UID FROM dual;
< 10 >
1 row found.

UNISTR

Expressions 3-87

UNISTR

The UNISTR takes as its argument a string that resolves to data of type NVARCHAR2
and returns the value in UTF-16 format. Unicode escapes are supported. You can
specify the Unicode encoding value of the characters in the string.

SQL syntax
UNISTR ('String')

Parameters
UNISTR has the parameter:

Examples
The following example invokes the UNISTR function passing as an argument the
string 'A\00E4a'. The value returned is the value of the string in UTF-16 format:

Command> SELECT UNISTR ('A\00E4a') FROM dual;
<Aäa> 1 row found.

Parameter Description

'String' The string passed to the UNISTR function. The string resolves to type
NVARCHAR2. TimesTen returns the value in UTF-16 format. You can specify
Unicode escapes as part of the string.

USER functions

3-88 Oracle TimesTen In-Memory Database SQL Reference

USER functions

TimesTen supports these USER functions:

■ CURRENT_USER

■ USER

■ SESSION_USER

■ SYSTEM_USER

Each of these functions returns the name of the user that is currently connected to the
TimesTen database.

USER functions

Expressions 3-89

CURRENT_USER

Returns the name of the TimesTen user currently connected to the data store.

SQL syntax
CURRENT_USER

Parameters
CURRENT_USER has no parameters.

Examples
To return the name of the user who is currently connected to the data store:

SELECT CURRENT_USER FROM dual;

USER

3-90 Oracle TimesTen In-Memory Database SQL Reference

USER

Returns the name of the TimesTen user who is currently connected to the data store.

SQL syntax
USER

Parameters
USER has no parameters.

Examples
To return the name of the user who is currently connected to the data store:

SELECT USER FROM dual;

USER functions

Expressions 3-91

SESSION_USER

Returns the name of the TimesTen user currently connected to the data store.

SQL syntax
SESSION_USER

Parameters
SESSION_USER has no parameters.

Examples
To return the name of the session user:

SELECT SESSION_USER FROM dual;

SYSTEM_USER

3-92 Oracle TimesTen In-Memory Database SQL Reference

SYSTEM_USER

Returns the name of the current data store user as identified by the operating system.

SQL syntax
SYSTEM_USER

Parameters
SYSTEM_USER has no parameters.

Examples
To return the name of the operating system user:

SELECT SYSTEM_USER FROM dual;

4

Search Conditions 4-1

4Search Conditions

A search condition specifies criteria for choosing rows to select, update, or delete.
Search conditions are parameters that can exist in clauses and expressions of any DML
statements, such as INSERT...SELECT, UPDATE and CREATE VIEW and some DDL
statements, such as CREATE VIEW.

Search condition general syntax

4-2 Oracle TimesTen In-Memory Database SQL Reference

Search condition general syntax

A search condition is a single predicate or several predicates connected by the logical
operators AND or OR. A predicate is an operation on expressions that evaluates to
TRUE, FALSE, or UNKNOWN. If a predicate evaluates to TRUE for a row, the row
qualifies for further processing. If the predicate evaluates to FALSE or NULL for a row,
the row is not available for operations.

SQL syntax
[NOT]
{BetweenPredicate | ComparisonPredicate | InPredicate |

LikePredicate| NullPredicate | InfinitePredicate | NanPredicate |
QuantifiedPredicate |(SearchCondition)}
[{AND | OR} [NOT]
{BetweenPredicate | ComparisonPredicate |InPredicate |

LikePredicate|NullPredicate | QuantifiedPredicate |(SearchCondition)}
] [...]

Parameters

Component Description

NOT, AND, OR Logical operators with the following functions:

■ NOT negates the value of the predicate that follows it.

■ AND evaluates to TRUE if both the predicates it joins evaluate
to TRUE.

■ OR evaluates to TRUE if either predicate it joins evaluates to
TRUE, and to FALSE if both predicates evaluates to FALSE.

■ See "Description" on page 4-3 for a description of how these
operators work when predicates evaluate to NULL.

BetweenPredicate Determines whether an expression is within a certain range of
values. For example: A BETWEEN B AND C is equivalent to A >=
B AND A<= C.

ComparisonPredicate Compares two expressions or list of two expressions using one of
the operators <, <=, >, >=, =, <>.

InPredicate Determines whether an expression or list of expressions matches
an element within a specified set.

ExistsPredicate Determines whether a subquery returns any row.

LikePredicate Determines whether an expression contains a particular -character
string pattern.

NullPredicate Determines whether a value is NULL.

InfinitePredicate Determines whether an expression is infinite (positive or negative
infinity).

NanPredicate Determines whether an expression is the undefined result of an
operation ("not a number.")

QuantifiedPredicate Determines whether an expression or list of expressions bears a
particular relationship to a specified set.

(SearchCondition) One of the above predicates, enclosed in parentheses.

Search condition general syntax

Search Conditions 4-3

Description
■ Predicates in a search condition are evaluated as follows:

– Predicates in parentheses are evaluated first.

– NOT is applied to each predicate.

– AND is applied next, left to right.

– OR is applied last, left to right.

Figure 4–1 shows the values that result from logical operations. A question mark
(?) represents the NULL value.

Figure 4–1 Values that result from logical operations

■ When the search condition for a row evaluates to NULL, the row does not satisfy
the search condition and the row is not operated on.

■ You can compare only compatible data types.

– TT_TINYINT, TT_SMALLINT, TT_INTEGER, TT_BIGINT, NUMBER,
BINARY_FLOAT and BINARY_DOUBLE are compatible.

– CHAR, VARCHAR2, BINARY, and VARBINARY are compatible, regardless of
length.

– CHAR, VARCHAR2, NCHAR, NVARCHAR2, TT_TIME, DATE and
TIMESTAMP are compatible.

■ See Chapter 3, "Expressions" for information on value extensions during
comparison operations.

■ See "Numeric data types" on page 1-15 for information about how TimesTen
compares values of different but compatible types.

AND T F ?
T

?
F

T

?
F

F

F
F

?

?
F

OR T F ?
T

?
F

T

T
T

T

?
F

T

?
?

NOT
T

?
F

F

?
T

ALL/ NOT IN predicate (subquery)

4-4 Oracle TimesTen In-Memory Database SQL Reference

ALL/ NOT IN predicate (subquery)

The ALL or NOT IN predicate indicates that the operands on the left side of the
comparison must compare in the same way with all of the values that the subquery
returns. The ALL predicate evaluates to TRUE if the expression or list of expressions
relates to all rows returned by the subquery as specified by the comparison operator.
Similarly, the NOT IN predicate evaluates to TRUE if the expression or list of
expressions does not equal the value returned by the subquery.

SQL syntax
RowValueConstructor {CompOp ALL| NOT IN} (Subquery)

The syntax for RowValueConstructor:

RowValueConstructorElement | (RowValueConstuctorList) | Subquery

The syntax for RowValueConstructorList:

RowValueConstructorElement [{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:

Expression | NULL

The syntax for CompOp:

{= | <> | > | >= | < | <= }

Parameters

Description
■ The ALL predicate, which returns zero or more rows, uses a comparison operator

modified with the keyword ALL. See "Numeric data types" on page 1-15 for
information about how TimesTen compares values of different but compatible
types.

■ If RowValueConstructorList is specified only the operators = and <> are
allowed.

Component Description

Expression The syntax of expressions is defined under "Expression specification" on
page 3-3. Both numeric and non-numeric expressions are allowed for ALL
predicates, but both expression types must be compatible with each other.

= Is equal to.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

<= Is less than or equal to.

Subquery The syntax of subqueries is defined under "Subqueries" on page 3-6

ALL/ NOT IN predicate (subquery)

Search Conditions 4-5

Examples
Examples of NOT IN with subqueries:

SELECT * FROM customers
WHERE cid NOT IN
(SELECT cust_id FROM returns)
AND cid > 5000;

SELECT * FROM customers
WHERE cid NOT IN
(SELECT cust_id FROM returns)
AND cid NOT IN
(SELECT cust_id FROM complaints);

SELECT COUNT(*) From customers
WHERE cid NOT IN
(SELECT cust_id FROM returns)
AND cid NOT IN
(SELECT cust_id FROM complaints);

Select all books that are not from exclBookList or if the price of the book is higher
than $20.

SELECT * FROM books WHERE id NOT IN (SELECT id FROM exclBookList) OR
books.price>20;

The following query returns the employee_id and job_id from the job_history
table. It illustrates use of expression list and subquery with the NOT IN predicate.

Command> SELECT employee_id, job_id FROM job_history WHERE (employee_id, job_id)
NOT IN (SELECT employee_id, job_id FROM employees);
< 101, AC_ACCOUNT >
< 101, AC_MGR >
< 102, IT_PROG >
< 114, ST_CLERK >
< 122, ST_CLERK >
< 176, SA_MAN >
< 200, AC_ACCOUNT >
< 201, MK_REP >
8 rows found.

ALL/NOT IN predicate (value list)

4-6 Oracle TimesTen In-Memory Database SQL Reference

ALL/NOT IN predicate (value list)

The ALL/NOT IN quantified predicate compares an expression or list of expressions
with a list of specified values. The ALL predicate evaluates to TRUE if all the values in
the ValueList relate to the expression or list of expressions as indicated by the
comparison operator. Similarly, the NOT IN predicate evaluates to TRUE if the
expression or list of expressions does not equal one of the values in the list.

SQL syntax
RowValueConstructor {CompOp ALL | NOT IN} ValueList

The syntax for RowValueConstructor:

RowValueConstructorElement | (RowValueConstuctorList) |

The syntax for RowValueConstructorList:

RowValueConstructorElement[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:

Expression | NULL

The syntax for CompOp:

{= | <> | > | >= | < | <= }

The syntax for more than one element in the ValueList:

({Constant | ? | :DynamicParameter} [,...])

The syntax for one element in the ValueList not enclosed in parentheses:

Constant | ? | :DynamicParameter

The syntax for an empty ValueList:

()

The syntax for the ValueList for a list of expressions:

(({Constant | ? | :DynamicParameter} [,...]))

Parameters

Component Description

Expression Specifies a value to be obtained. The values in ValueList
must be compatible with the expression. For information on
the syntax of expressions, see "Expression specification" on
page 3-3.

= Is equal to.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

ALL/NOT IN predicate (value list)

Search Conditions 4-7

Description
■ If X is the value of Expression, and (a,b, ..., z) represents the elements in

ValueList, and OP is a comparison operator, then the following is true:

– X OP ALL (a,b,...,z) is equivalent to X OP a AND X OP b
AND...AND X OP z.

■ If X is the value of Expression and (a,b,..., z) are the elements in a
ValueList, then the following is true:

– X NOT IN (a,b,...,z) is equivalent to NOT (X IN (a,b,...,z)).

■ Character strings are compared according to the ASCII collating sequence for
ASCII data.

■ NULL cannot be specified in ValueList.

■ See "Numeric data types" on page 1-15 for information about how TimesTen
compares values of different but compatible types.

■ NOT IN or NOT EXISTS with ALL can be specified in an OR expression.

■ IN and EXISTS with ALL can be specified in an OR expression.

■ When evaluating an empty ValueList, the result of Expression NOT IN is
true.

■ If RowValueConstructorList is specified only the operators = and <> are
allowed.

Examples
To query an empty select list for a NOT IN condition:

SELECT * FROM t1 WHERE x1 NOT IN ();

<= Is less than or equal to.

ALL The predicate is TRUE if all the values in the ValueList relate
to the expression or list of expressions as indicated by the
comparison operator.

ValueList A list of values that are compared against the expression's or
list of expression's value. The ValueList cannot contain a
column reference or a subquery. The ValueList can be nested
if the left operand of the ValueList is a list.

Elements of the ValueList:

■ Constant—Indicates a specific value. See "Constants" on
page 3-11.

■ ?,:DynamicParameter—Placeholder for a dynamic
parameter in a prepared SQL statement. The value of the
dynamic parameter is supplied when the statement is
executed.

■ Empty list, which are sometimes generated by SQL
generation tools.

Component Description

ANY/ IN predicate (subquery)

4-8 Oracle TimesTen In-Memory Database SQL Reference

ANY/ IN predicate (subquery)

An ANY predicate compares two expressions using a comparison operator. The
predicate evaluates to TRUE if the first expression relates to anyrow returned by the
subquery as specified by the comparison operator. Similarly, the IN predicate
compares an expression or list of expressions with a table subquery. The IN predicate
evaluates to TRUE if the expression or list of expressions is equal to a value returned
by a subquery.

SQL syntax
RowValueConstructor {CompOp ANY| IN} (Subquery)

The syntax for RowValueConstructor:

RowValueConstructorElement | (RowValueConstuctorList) | Subquery

The syntax for RowValueConstructorList:

RowValueConstructorElement[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:

Expression | NULL

The syntax for CompOp:

{= | <> | > | >= | < | <= }

Parameters

Description
The ANY predicate, which returns zero or more rows, uses a comparison operator
modified with the keyword ANY. See "Numeric data types" on page 1-15 for
information about how TimesTen compares values of different but compatible types.

Examples
This example retrieves a list of customers having at least one unshipped order:

Component Description

Expression The syntax of expressions is defined under "Expression
specification" on page 3-3. Both numeric and non-numeric
expressions are allowed for ANY predicates, but both
expression types must be compatible with each other.

= Is equal to.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

<= Is less than or equal to.

Subquery The syntax of subqueries is defined under "Subqueries" on
page 3-6.

ANY/ IN predicate (subquery)

Search Conditions 4-9

SELECT customers.name FROM customers
WHERE customers.id = ANY
(SELECT orders.custid FROM orders
WHERE orders.status = 'unshipped');

This is an example of an IN predicate with subquery. It SELECTs customers having at
least one unshipped order:

SELECT customers.name FROM customers
WHERE customers.id IN
(SELECT orders.custid FROM orders
WHERE orders.status = 'unshipped');

This example uses an aggregate query that specifies a subquery with IN to find the
maximum price of a book in the exclBookList:

SELECT MAX(price) FROM books WHERE id IN (SELECT id FROM exclBookList);

This example illustrates the use of a list of expressions with the IN predicate and a
subquery.

SELECT * FROM t1 WHERE (x1,y1) IN (SELECT x2,y2 FROM t2);

This example illustrates the use of a list of expressions with the ANY predicate and a
subquery.

Command> SELECT * FROM t1 WHERE (x1,y1) < ANY (SELECT x2,y2 FROM t2);

The following example illustrates the use of a list of expressions with the ANY
predicate.

Command> columnlabels on;
Command> SELECT * FROM t1;
X1, Y1
< 1, 2 >
< 3, 4 >
2 rows found.
Command> SELECT * FROM t2;
X2, Y2
< 3, 4 >
< 1, 2 >
2 rows found.

ANY/ IN predicate (value list)

4-10 Oracle TimesTen In-Memory Database SQL Reference

ANY/ IN predicate (value list)

The ANY/IN quantified predicate compares an expression or list of expressions with a
list of specified values. The ANY predicate evaluates to TRUE if one or more of the
values in the ValueList relate to the expression or list of expressions as indicated by the
comparison operator. Similarly, the IN predicate evaluates to TRUE if the expression or
list of expressions is equal to one of the values in the list.

SQL syntax
RowValueConstructor {CompOp {ANY| SOME} | IN} ValueList

The syntax for RowValueConstructor:

RowValueConstructorElement | (RowValueConstuctorList) |

The syntax for RowValueConstructorList:

RowValueConstructorElement[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:

Expression | NULL

The syntax for CompOp:

{= | <> | > | >= | < | <= }

The syntax for more than one element in the ValueList:

({Constant | ? | :DynamicParameter} [,...])

The syntax for one element in the ValueList not enclosed in parentheses:

Constant | ? | :DynamicParameter

The syntax for an empty ValueList:

()

The syntax for the ValueList for a list of expressions:

(({Constant | ? | :DynamicParameter} [,...]))

Parameters

Component Description

Expression Specifies a value to be obtained. The values in ValueList
must be compatible with the expression. For information on
the syntax of expressions, see "Expression specification" on
page 3-3.

= Is equal to.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

ANY/ IN predicate (value list)

Search Conditions 4-11

Description
■ If X is the value of Expression, and (a,b, ..., z) represents the elements in

ValueList, and OP is a comparison operator, then the following is true:

– X OP ANY (a,b,...,z) is equivalent to X OP a OR X OP b OR...OR
X OP z.

■ If X is the value of Expression and (a,b,..., z) are the elements in a
ValueList, then the following is true:

– X IN (a,b,...,z) is equivalent to X = a OR X = b OR...OR X = z.

■ Character strings are compared according to the ASCII collating sequence for
ASCII data.

■ NULL cannot be specified in ValueList.

■ See "Numeric data types" on page 1-15 for information about how TimesTen
compares values of different but compatible types.

■ When evaluating an empty ValueList, the result of Expression IN is false.

Examples
Select all item numbers containing orders of 100, 200, or 300 items.

SELECT DISTINCT OrderItems.ItemNumber
FROM OrderItems
WHERE OrderItems.Quantity = ANY (100, 200, 300)

Get part numbers of parts whose weight is 12, 16, or 17.

SELECT Parts.PartNumber FROM Parts
WHERE Parts.Weight IN (12, 16, 17);

Get part number of parts whose serial number is '1123-P-01', '1733-AD-01',
:SerialNumber or :SerialInd, where :SerialNumber and :SerialInd are
dynamic parameters whose values are supplied at runtime.

SELECT PartNumber FROM Purchasing.Parts

<= Is less than or equal to.

{ANY|

SOME}

The predicate is TRUE if one or more of the values in the
-ValueList relate to the expression or list of expressions as
indicated by the comparison operator. SOME is a synonym for
ANY.

ValueList A list of values that are compared against the expression's or
list of expression's value. The ValueList cannot contain a
column reference or a subquery. The ValueList can be
nested if the left operand of the ValueList is a list.

Elements of the ValueList:

■ Constant—Indicates a specific value. See "Constants" on
page 3-11.

■ ?,:DynamicParameter—Placeholder for a dynamic
parameter in a prepared SQL statement. The value of the
dynamic parameter is supplied when the statement is
executed.

■ Empty list, which are sometimes generated by SQL
generation tools.

Component Description

ANY/ IN predicate (value list)

4-12 Oracle TimesTen In-Memory Database SQL Reference

WHERE SerialNumber
IN ('1123-P-01', '1733-AD-01',:SerialNumber, :SerialInd);

To query an empty select list for IN condition:

SELECT * FROM t1 WHERE x1 IN ();

Illustrates the use of a list of expressions with in:

SELECT * FROM t1 WHERE (x1,y1) IN ((1,2), (3,4));

The following example illustrates the use of a list of expressions for the IN predicate.
The query returns the department_name for departments with department_id =
240 and location_id = 1700.

Command> select department_name from departments where (department_id, location_
id) in ((240,1700));
< Government Sales >
1 row found.

Note: The expression on the right side of the IN predicate must be
enclosed in double parentheses (()).

BETWEEN predicate

Search Conditions 4-13

BETWEEN predicate

A BETWEEN predicate determines whether a value is:

■ Greater than or equal to a second value, and

■ Less than or equal to a third value.

The predicate evaluates to TRUE if a value falls within the specified range.

SQL syntax
Expression1 [NOT] BETWEEN Expression2 AND Expression3

Parameters

Description
■ BETWEEN evaluates to FALSE and NOT BETWEEN evaluates to TRUE if the

second value is greater than the third value.

■ Consult the following table if either Expression2 or Expression3 is NULL for
BETWEEN or NOT BETWEEN:

■ Expression2 and Expression3 constitute a range of possible values for which
Expression2 is the lowest possible value and Expression3 is the highest
possible value within the specified range. In the BETWEEN predicate, the low
value must be specified first.

Comparisons are conducted as described in "Comparison predicate" on page 4-14.

■ The BETWEEN predicate is not supported for NCHAR types.

Examples
Parts sold for under $250.00 and over $1500.00 are discounted 25 percent.

UPDATE Purchasing.Parts
SET SalesPrice = SalesPrice * 0.75
WHERE SalesPrice NOT BETWEEN 250.00 AND 1500.00;

Parameter Description

Expression1,
Expression2,
Expression3

The syntax for expressions is defined in "Expression
specification" on page 3-3. Both numeric and non-numeric
expressions are allowed in BETWEEN predicates, but all
expressions must be compatible with each other.

Expression2 Expression3 BETWEEN NOT BETWEEN

<= Expression1 NULL NULL NULL

> Expression1 NULL FALSE TRUE

NULL >= Expression1 NULL NULL

NULL < Expression1 NULL NULL

Comparison predicate

4-14 Oracle TimesTen In-Memory Database SQL Reference

Comparison predicate

A comparison predicate compares two expressions using a comparison operator. The
predicate evaluates to TRUE if the first expression relates to the second expression as
specified by the comparison operator.

SQL syntax
RowValueConstructor CompOp RowValueConstructor2

The syntax for RowValueConstructor:

RowValueConstructorElement | (RowValueConstuctorList) | ScalarSubquery

The syntax for RowValueConstructorList:

RowValueConstructorElement[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructor2 (one expression)

Expression

The syntax for RowValueConstructor2 (list of expressions)

((Expression[,...]))

The syntax for CompOp:

{= | <> | > | >= | < | <= }

Parameters

Description
■ Character strings are compared according to the ASCII collating sequence for

ASCII data.

■ If there is a NULL value on either or both sides of a comparison predicate, the
predicate evaluates to NULL and the row is not operated on.

Component Description

Expression The syntax for expressions is defined under "Expression
specification" on page 3-3. Both numeric and non-numeric
expressions are allowed in comparison predicates, but
both expressions must be compatible with each other.

ScalarSubquery A subquery that returns a single value. Scalar subqueries
and their restrictions are defined under "Subqueries" on
page 3-6.

= Is equal to.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

<= Is less than or equal to.

Comparison predicate

Search Conditions 4-15

■ If RowValueConstructorList is specified only the operators = and <> are
allowed.

■ See "Numeric data types" on page 1-15 for information about how TimesTen
compares values of different but compatible types.

Examples
Retrieve part numbers of parts requiring fewer than 20 delivery days:

SELECT PartNumber FROM Purchasing.SupplyPrice
WHERE DeliveryDays < 20;

The query returns the last_name of employees where salary=9500 and
commission_pct=.25.

Command> select last_name from employees where(salary,commission_pct) =
((9500,.25));
< Bernstein >
1 row found.

The query returns the last_name of the employee whose manager_id = 205. The
employee's department_id and manager_id is stored in both the employees and
departments tables. A subquery is used to extract the information from the
departments table.

Command> select last_name from employees where (department_id, manager_id) =
(select department_id, manager_id from departments where manager_id = 205);
< Gietz >
1 row found.

Note: The expression on the right side of the equal sign must be
enclosed in double parentheses (()).

EXISTS predicate

4-16 Oracle TimesTen In-Memory Database SQL Reference

EXISTS predicate

An EXISTS predicate checks for the existence or nonexistence of a table subquery. The
predicate evaluates to TRUE if the subquery returns at least one row for EXISTS and
no rows for NOT EXISTS

SQL syntax
[NOT] EXISTS (Subquery)

Parameters
The EXISTS predicate has the following parameter:

Description
■ When a subquery is introduced with EXISTS, the subquery functions as an

existence test. EXISTS tests for the presence or absence of an empty set of rows. If
the subquery returns at least one row, the subquery evaluates to true.

■ When a subquery is introduced with NOT EXISTS, the subquery functions as an
absence test. NOT EXISTS tests for the presence or absence of an empty set of rows.
If the subquery returns no rows, the subquery evaluates to true.

■ If join order is issued using the ttOptSetOrder built-in procedure that conflicts
with the join ordering requirements of the NOT EXISTS subquery, the specified
join order is ignored, TimesTen issues a warning and the query is executed.

■ The following table describes supported and unsupported usages of EXISTS and
NOT EXISTS in TimesTen;

Examples
Get a list of customers having at least one unshipped order.

SELECT customers.name FROM customers
WHERE EXISTS (SELECT 1 FROM orders
WHERE customers.id = orders.custid
AND orders.status = 'un-shipped');

Get a list of customers having at no unshipped orders.

SELECT customers.name FROM customers
WHERE NOT EXISTS (SELECT 1 FROM orders
WHERE customers.id = orders.custid

Parameter Description

Subquery The syntax of subqueries is defined under "Subqueries" on page 3-6

Query/subquery description Not Exists Exists

Aggregates in subquery Supported Supported

Aggregates in main query Supported Supported

Subquery in OR clause Supported Supported

Join ordering using the
ttOptSetOrder built-in procedure

Limited support Supported

EXISTS predicate

Search Conditions 4-17

AND orders.status = 'un-shipped');

IS INFINITE predicate

4-18 Oracle TimesTen In-Memory Database SQL Reference

IS INFINITE predicate

An IS INFINITE predicate determines whether an expression is infinite (positive
infinity (INF) or negative infinity (-INF)).

SQL syntax
Expression IS [NOT] INFINITE

Parameters

Description
■ An IS INFINITE predicate evaluates to TRUE if the expression is positive or

negative infinity.

■ An IS NOT INFINITE predicate evaluates to TRUE if expression is neither positive
nor negative infinity.

■ The expression must either resolve to a numeric data type or to a data type that
can be implicitly converted to a numeric data type.

■ Two positive infinity values are equal to each other. Two negative infinity values
are equal to each other.

■ Expressions containing floating-point values may generate Inf, -Inf, or NaN. This
can occur either because the expression generated overflow or exceptional
conditions or because one or more of the values in the expression was Inf, -Inf, or
NaN. Inf and NaN are generated in overflow or division by 0 conditions.

■ Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values are.
If you wish to exclude Inf and NaN from aggregates (or from any selection), use
both the IS NOT NAN and IS NOT INFINITE predicates.

■ Negative infinity (-INF) sorts lower than all other values. Positive infinity (INF)
sorts higher than all other values, but lower than NaN ("not a number") and the
NULL value.

■ For more information on Inf and Nan, see "INF and NAN" on page 1-29.

Parameter Description

Expression Expression to test.

IS NAN predicate

Search Conditions 4-19

IS NAN predicate

An IS NAN predicate determines whether an expression is the undefined result of an
operation (that is, is "not a number" or NaN).

SQL syntax
Expression IS [NOT] NAN

Parameters

Description
■ An IS NAN predicate evaluates to TRUE if the expression is "not a number."

■ An IS NOT NAN predicate evaluates to TRUE if expression is not "not a number."

■ The expression must either resolve to a numeric data type or to a data type that
can be implicitly converted to a numeric data type.

■ Two NaN ("not a number") values are equal to each other.

■ Expressions containing floating-point values may generate Inf, -Inf, or NaN. This
can occur either because the expression generated overflow or exceptional
conditions or because one or more of the values in the expression was Inf, -Inf, or
NaN. Inf and NaN are generated in overflow or division by 0 conditions.

■ Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values are.
If you wish to exclude Inf and NaN from aggregates (or from any selection), use
both the IS NOT NAN and IS NOT INFINITE predicates.

■ NaN ("not a number") sorts higher than all other values including positive infinity,
but lower than the NULL value.

■ For more information on Inf and Nan, see "INF and NAN" on page 1-29.

Parameter Description

Expression Expression to test.

IS NULL predicate

4-20 Oracle TimesTen In-Memory Database SQL Reference

IS NULL predicate

An IS NULL predicate determines whether an expression has the value NULL. The
predicate evaluates to TRUE if the expression is NULL. If the NOT option is used, the
predicate evaluates to TRUE if the expression is NOT NULL.

SQL syntax
{ColumnName | Constant | (Expression)} IS [NOT] NULL

Parameters

Examples
Vendors with no personal contact names are identified.

SELECT *
FROM Purchasing.Vendors
WHERE ContactName IS NULL;

Parameter Description

ColumnName The name of a column from which a value is to be taken.
Column names are discussed in Chapter 2, "Names and
Parameters".

Constant A specific value. See "Constants" on page 3-11.

(Expression) Expression to test.

LIKE predicate

Search Conditions 4-21

LIKE predicate

A LIKE predicate determines whether a CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 expression contains a given pattern. The predicate evaluates to TRUE if
an expression contains the pattern.

SQL syntax
Expression [NOT] LIKE
{'PatternString'| {? | :DynamicParameter}}
[ESCAPE {'EscapeChar' | {? | :DynamicParameter}}]

Parameters

Parameter Description

Expression The syntax of expressions is presented in Chapter 3,
"Expressions".

PatternString Describes what you are searching for in the expression.
The pattern may consist of characters only (including
digits and special characters). For example, NAME
LIKE 'Annie' evaluates to TRUE only for a name of
Annie with no spaces. Upper case and lower case are
significant.

You can also use the predicate to test for a partial
match by using the following symbols in the pattern:

_ Represents any single character.

For example,

BOB and TOM both satisfy the predicate NAME LIKE
'_O_'.

% Represents any string of zero or more characters.

For example, MARIE and RENATE both satisfy the
predicate NAME LIKE '%A%'.

You can use the _ and % symbols multiple times and in
any combination in a pattern. You cannot use these
symbols literally within a pattern unless you use the
ESCAPE clause and precede the symbols with the
escape character, described by the EscapeChar
parameter.

EscapeChar Describes an optional escape character which can be
used to interpret the symbols _ and % literally in the
pattern.

The escape character must be a single character. When
it appears in the pattern, it must be followed by the
escape character itself, the _ symbol or the % symbol.
Each such pair represents a single literal occurrence of
the second character in the pattern. The escape
character is always case sensitive. The escape character
cannot be _ or %.

?

DynamicParameter

Indicates a dynamic parameter in a prepared SQL
statement. The parameter value is supplied when the
statement is executed.

LIKE predicate

4-22 Oracle TimesTen In-Memory Database SQL Reference

Description
■ As long as no escape character is specified, the _ or % in the pattern acts as a wild

card character. If an escape character is specified, then the wild card or escape
character that follows is treated literally. If the character following an escape
character is not a wild card or the escape character, an error results.

■ If the value of the expression, the pattern, or the escape character is NULL, then
the LIKE predicate evaluates to NULL and the row is not operated on.

Examples
Vendors located in states beginning with an "A" are identified.

SELECT VendorName FROM Purchasing.Vendors
WHERE VendorState LIKE 'A%';

Vendors whose names begin with ACME_ are identified (note use of the ESCAPE
clause).

SELECT VendorName FROM Purchasing.Vendors
WHERE VendorName LIKE 'ACME!_%' ESCAPE '!';

LIKE predicate

Search Conditions 4-23

NCHAR and NVARCHAR2

The LIKE predicate can be used for pattern matching of NCHAR and NVARCHAR2
strings. The pattern matching characters are:

Description
■ The escape character is similarly supported as a single Unicode character or

parameter.

■ The types of the LIKE operands can be any combination of character types.

■ Case- and accent-insensitive NLS_SORT is supported with the LIKE predicate.

Examples
In these examples, the Unicode character U+0021 EXCLAMATION MARK is being
used to escape the Unicode character U+005F SPACING UNDERSCORE. Unicode
character U+0025 PERCENT SIGN is not escaped, and assumes its pattern matching
meaning.

VendorName is an NCHAR or NVARCHAR2 column.

SELECT VendorName FROM Purchasing.Vendors
WHERE VendorName LIKE N'ACME!_%' ESCAPE N'!';

This example is equivalent:

SELECT VendorName FROM Purchasing.Vendors
WHERE VendorName LIKE N'ACME!\u005F\u0025' ESCAPE N'!';

Character Description

U+005F SPACING UNDERSCORE Represents any single Unicode character.

U+0025 PERCENT SIGN Represents any string of zero or more Unicode
characters.

NCHAR and NVARCHAR2

4-24 Oracle TimesTen In-Memory Database SQL Reference

5

SQL Statements 5-1

5SQL Statements

This chapter provides information about the SQL statements available in TimesTen.

SQL statements are generally considered to be either Data Manipulation Language
(DML) statements or Data Definition Language (DDL) statements.

DML statements modify data store objects. INSERT, UPDATE and DELETE are
examples of DML statements.

DDL statements modify the data store schema. CREATE TABLE and DROP TABLE are
examples of DDL statements.

Comments within SQL statements
A comment can appear between keywords, parameters, or punctuation marks in a
statement. You can include a comment in a statement in two ways:

■ Begin the comment with a slash and an asterisk (/*). Proceed with the text of the
comment. The text can span multiple lines. End the comment with an asterisk
and a slash. (*/). You do not need to separate the opening and terminating
characters from the text by a space or line break.

■ Begin the comment with -- (two hyphens). Proceed with the text of the comment.
The text cannot extend to a new line. End the comment with a line break.

ALTER ACTIVE STANDBY PAIR

5-2 Oracle TimesTen In-Memory Database SQL Reference

ALTER ACTIVE STANDBY PAIR

You can change an active standby pair by:

■ Adding or dropping a subscriber data store

■ Altering store attributes. Only the PORT and TIMEOUT attributes can be set for
subscribers.

■ Including tables, sequences or cache groups in the replication scheme

■ Excluding tables, sequences or cache groups from the replication scheme

See "Changing the configuration of an active standby pair" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.

Required privilege
ADMIN

SQL syntax
ALTER ACTIVE STANDBY PAIR {

SubscriberOperation |
StoreOperation | InclusionOperation |
NetworkOperation } [...]

Syntax for SubscriberOperation:

{ADD | DROP } SUBSCRIBER FullStoreName

Syntax for StoreOperation:

ALTER STORE FullStoreName SET StoreAttribute

Syntax for InclusionOperation:

[{ INCLUDE | EXCLUDE }{TABLE [[Owner.]TableName [,...]]|
CACHE GROUP [[Owner.]CacheGroupName [,...]]|
SEQUENCE [[Owner.]SequenceName [,...]]} [,...]]

Syntax for NetworkOperation:

ADD ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }

PRIORITY Priority } [...]
DROP ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName

{ MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost } [...]

Parameters
ALTER ACTIVE STANDBY PAIR has the parameters:

Parameter Description

ADD SUBSCRIBER FullStoreName Indicates a subscriber data store. FullStoreName is
the data store file name specified in the DataStore
attribute of the DSN description.

ALTER ACTIVE STANDBY PAIR

SQL Statements 5-3

DROP SUBSCRIBER FullStoreName Indicates that updates should no longer be sent to the
specified subscriber data store. This operation fails if
the replication scheme has only one subscriber.
FullStoreName is the data store file name specified
in the DataStore attribute of the DSN description.

ALTER STORE FullStoreName SET
StoreAttribute

Indicates changes to the attributes of a data store.
Only the PORT and TIMEOUT attributes can be set for
subscribers. FullStoreName is the data store file
name specified in the DataStore attribute of the
DSN description.

For information on StoreAttribute clauses, see
"ALTER REPLICATION" on page 5-14.

FullStoreName The data store, specified as one of the following:

■ SELF

■ The prefix of the data store file name

For example, if the data store path is
directory/subdirectory/data.ds0, then data
is the data store name that should be used.

This is the data store file name specified in the
DataStore attribute of the DSN description with
optional host ID in the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host
name assigned to one or more IP addresses, as
described in "Configuring host IP addresses" in Oracle
TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide. Host names containing special
characters must be surrounded by double quotes. For
example: "MyHost-500".

{INCLUDE|EXCLUDE}

{[TABLE
[Owner.]TableName[,...]|

CACHE GROUP

[[Owner.]CacheGroupName
]|[,...]

SEQUENCE
[[Owner.]SequenceName
[,...]}

[,...]

Includes in or excludes from replication the tables,
sequences or cache groups listed.

INCLUDE adds the tables, sequences or cache groups
to replication. Use one INCLUDE clause for each object
type (table, sequence or cache group).

EXCLUDE removes the tables, sequences or cache
groups from replication. Use one EXCLUDE clause for
each object type (table, sequence or cache group).

ADD ROUTE MASTER
FullStoreName SUBSCRIBER
FullStoreName

Adds NetworkOperation to replication scheme.
Allows you to control the network interface that a
master store uses for every outbound connection to
each of its subscriber stores. In the context of the ADD
ROUTE clause, each master data store is a subscriber of
the other master data store and each read-only
subscriber is a subscriber of both master data stores.

Can be specified more than once.

For FullStoreName, "ON host" must be specified.

DROP ROUTE MASTER
FullStoreName SUBSCRIBER
FullStoreName

Drops NetworkOperation from replication scheme.

Can be specified more than once.

For FullStoreName, "ON host" must be specified.

Parameter Description

ALTER ACTIVE STANDBY PAIR

5-4 Oracle TimesTen In-Memory Database SQL Reference

Description
■ Your must stop the replication agent before altering the active standby pair.

■ You may only alter the active standby pair replication scheme on the active data
store. See "Changing the configuration of an active standby pair" in Oracle
TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for more
information.

■ Use ADD SUBSCRIBER FullStoreName to add a subscriber to the replication
scheme.

■ Use DROP SUBSCRIBER FullStoreName to drop a subscriber from the
replication scheme.

■ Use ALTER STORE FullStoreName SET StoreAttribute to change the
attributes for the specified data store. Only the PORT and TIMEOUT attributes can
be set for subscribers.

■ Use the INCLUDE or EXCLUDE clause to include the listed tables, sequences or
cache groups in the replication scheme, or to exclude them from the replication
scheme. Use one INCLUDE clause for each object type (table, sequence or cache
group). Use one EXCLUDE clause for each object type (table, sequence or cache
group).

Examples
Add a subscriber to the replication scheme.

ALTER ACTIVE STANDBY PAIR
ADD SUBSCRIBER rep4;

Drop two subscribers from the replication scheme.

ALTER ACTIVE STANDBY PAIR
DROP SUBCRIBER rep3
DROP SUBSCRIBER rep4;

Alter the store attributes of the rep3 and rep4 data stores.

ALTER ACTIVE STANDBY PAIR
ALTER STORE rep3 SET PORT 23000 TIMEOUT 180
ALTER STORE rep4 SET PORT 23500 TIMEOUT 180;

MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost

MasterHost and SubscriberHost are the IP
addresses for the network interface on the master and
subscriber stores. Specify in dot notation or canonical
format or in colon notation for IPV6.

Clause can be specified more than once. Valid for both
ADD and DROP ROUTE MASTER.

PRIORITY Priority Variable expressed as an integer from 1 to 99. Denotes
the priority of the IP address. Lower integral values
have higher priority. An error is returned if multiple
addresses with the same priority are specified.
Controls the order in which multiple IP addresses are
used to establish peer connections.

Required syntax of NetworkOperation clause.
Follows MASTERIP MasterHost | SUBSCRIBERIP
SubscriberHost clause.

Parameter Description

ALTER ACTIVE STANDBY PAIR

SQL Statements 5-5

Add a table, a sequence and two cache groups to the replication scheme.

ALTER ACTIVE STANDBY PAIR
INCLUDE TABLE my.newtab
INCLUDE SEQUENCE my.newseq
INCLUDE CACHE GROUP my.newcg1, my.newcg2;

Add NetworkOperation clause to active standby pair:

ALTER ACTIVE STANDBY PAIR
ADD ROUTE MASTER rep1 ON "machine1" SUBSCRIBER rep2 ON "machine2"
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2" PRIORITY 1;

See also
CREATE ACTIVE STANDBY PAIR
DROP ACTIVE STANDBY PAIR

ALTER CACHE GROUP

5-6 Oracle TimesTen In-Memory Database SQL Reference

ALTER CACHE GROUP

The ALTER CACHE GROUP statement allows changes to the state, interval and mode
of AUTOREFRESH.

Updates on Oracle tables can be propagated back to the TimesTen cache group with
the use of AUTOREFRESH. AUTOREFRESH can be enabled when the cache group is a
user managed cache group or is defined as READONLY with an AUTOREFRESH
clause.

Any values or states set by ALTER CACHE GROUP are persistent. They are stored in
the data store and survive daemon and cache agent restarts.

For a description of cache group types, see "User managed and system managed cache
groups" on page 5-49.

Required privilege
No privilege is required for the cache group owner.

ALTER ANY CACHE GROUP for another user’s cache group.

SQL syntax
This statement changes the AUTOREFRESH mode of the cache group, which
determines which rows are updated during an autorefresh operation:

ALTER CACHE GROUP [Owner.]GroupName
SET AUTOREFRESH MODE
{INCREMENTAL | FULL}

This statement changes the AUTOREFRESH interval on the cache group:

ALTER CACHE GROUP [Owner.]GroupName
SET AUTOREFRESH INTERVAL IntervalValue
{MINUTE[S] | SECOND[S] | MILLISECOND[S] }

This statement alters the AUTOREFRESH state:

ALTER CACHE GROUP [Owner.]GroupName
SET AUTOREFRESH STATE
{ON | OFF | PAUSED}

Parameters
ALTER CACHE GROUP has the parameters:

Parameter Description

[Owner.]GroupName Name assigned to the new cache group.

AUTOREFRESH Indicates that changes to Oracle tables should be automatically
propagated to TimesTen. For details, see "AUTOREFRESH in
cache groups" on page 5-57.

MODE Determines which rows in the cache are updated during an
autorefresh. If the INCREMENTAL clause is specified, TimesTen
refreshes only rows that have been changed on Oracle since the
last propagation. If the FULL clause is specified or if there is
neither FULL nor INCREMENTAL clause specified, TimesTen
updates all rows in the cache with each autorefresh. The default
mode is INCREMENTAL.

ALTER CACHE GROUP

SQL Statements 5-7

Description
■ A refresh does not occur immediately after issuing ALTER CACHE GROUP...SET

AUTOREFRESH STATE. This statement only changes the state of
AUTOREFRESH. When the transaction that contains the ALTER CACHE GROUP
statement is committed, the cache agent is notified to schedule an AUTOREFRESH
immediately, but the commit goes through without waiting for the completion of
the refresh. The scheduling of the autorefresh operation is part of the transaction,
but the refresh itself is not.

■ If you issue an ALTER CACHE GROUP... SET AUTOREFRESH STATE OFF
statement and there is an autorefresh operation currently running, then:

– If LockWait interval is 0, the ALTER statement fails with a lock timeout error.

– If LockWait interval is non-zero, then the current autorefresh transaction is
rolled back, and the ALTER statement continues. This affects all cache groups
with the same autorefresh interval.

■ Replication cannot occur between cache groups with AUTOREFRESH and cache
groups without AUTOREFRESH.

■ If the ALTER CACHE GROUP statement is part of a transaction that is being
replicated, and if the replication scheme has the RETURN TWOSAFE attribute, the
transaction may fail.

See also
CREATE CACHE GROUP

INTERVAL

IntervalValue

Indicates the interval at which autorefresh should occur in units
of minutes, seconds or milliseconds. An integer value that
specifies how often AUTOREFRESH should be scheduled, in
minutes, seconds or milliseconds. The default value is 10
minutes. If the specified interval is not long enough for an
AUTOREFRESH to complete, a runtime warning is generated
and the next AUTOREFRESH waits until the current one finishes.
An informational message is generated in the support log if the
wait queue reaches 10.

STATE Specifies whether AUTOREFRESH should be changed to on, off
or paused. By default, the AUTOREFRESH STATE is on.

ON AUTOREFRESH is scheduled to occur at the specified -interval.

OFF A scheduled AUTOREFRESH is cancelled, and TimesTen does
not try to maintain the information necessary for an
INCREMENTAL refresh. Therefore if AUTOREFRESH is turned
on again at a later time, the first refresh is FULL.

PAUSED A scheduled AUTOREFRESH is cancelled, but TimesTen tries to
maintain the information necessary for an INCREMENTAL
refresh. Therefore if AUTOREFRESH is turned on again at a later
time, a full refresh may not be necessary.

Parameter Description

ALTER FUNCTION

5-8 Oracle TimesTen In-Memory Database SQL Reference

ALTER FUNCTION

The ALTER FUNCTION statement recompiles a standalone stored function. Explicit
recompilation eliminates the need for implicit runtime recompilation and prevents
associated runtime compilation errors and performance overhead.

To recompile a function that is part of a package, recompile the package using the
ALTER PACKAGE statement.

Required privilege
No privilege is required for the PL/SQL function owner.

ALTER ANY PROCEDURE for another user’s function.

SQL syntax
ALTER FUNCTION [Owner.]FunctionName COMPILE

[compiler_parameters_clause […]]
[REUSE SETTINGS]

Parameters
The ALTER FUNCTION statement has the parameters:

Description
■ The ALTER FUNCTION statement does not change the declaration or definition of

an existing function. To redeclare or redefine a function, use the CREATE
FUNCTION statement.

■ TimesTen first recompiles objects upon which the function depends, if any of those
objects are invalid.

Parameter Description

[Owner.]FunctionNam
e

Name of the function to be recompiled.

COMPILE Required keyword that causes recompilation of the function. If the
function does not compile successfully, use the ttIsql command
SHOW ERRORS to display the compiler error messages.

compiler_parameters
_clause

Use this optional clause to specify a value for one of the PL/SQL
persistent compiler parameters. The PL/SQL persistent compiler
parameters are PLSQL_OPTIMIZE_LEVEL, PLSCOPE_SETTINGS
and NLS_LENGTH_SEMANTICS.

You can specify each parameter once in the statement.

If you omit a parameter from this clause and you specify REUSE
SETTINGS, then if a value was specified for the parameter in an
earlier compilation, TimesTen uses that earlier value. If you omit a
parameter and either you do not specify REUSE SETTINGS or no
value has been specified for the parameter in an earlier
compilation, then TimesTen obtains the value for the parameter
from the session environment.

REUSE SETTINGS Use this optional clause to prevent TimesTen from dropping and
reacquiring compiler switch settings. When you specify REUSE
SETTINGS, TimesTen preserves the existing settings and uses them
for the compilation of any parameters for which values are not
specified.

ALTER FUNCTION

SQL Statements 5-9

■ TimesTen also invalidates any objects that depend on the function, such as
functions that call the recompiled function or package bodies that define functions
that call the recompiled function.

■ If TimesTen recompiles the function successfully, then the function becomes valid.
If recompiling the function results in compilation errors, then TimesTen returns an
error and the function remains invalid. Use the ttIsql command SHOW
ERRORS to display compilation errors.

■ During recompilation, TimesTen drops all persistent compiler settings, retrieves
them again from the session, and stores them at the end of compilation. To avoid
this process, specify the REUSE SETTINGS clause.

See also
CREATE FUNCTION

ALTER PACKAGE

5-10 Oracle TimesTen In-Memory Database SQL Reference

ALTER PACKAGE

The ALTER PACKAGE statement explicitly recompiles a package specification,
package body, or both. Explicit recompilation eliminates the need for implicit runtime
recompilation and prevents associated runtime compilation errors.

This statement recompiles all package objects together. You cannot use the ALTER
PROCEDURE or ALTER FUNCTION statement to individually recompile a procedure
or function that is part of a package.

Required privilege
No privilege is required for the package owner.

ALTER ANY PROCEDURE for another user’s package.

SQL syntax
ALTER PACKAGE [Owner.]PackageName COMPILE

[PACKAGE|SPECIFICATION|BODY]
[compiler_parameters_clause […]]
[REUSE SETTINGS]

Parameters
The ALTER PACKAGE statement has the parameters:

Parameter Description

[Owner.]PackageName Name of the package to be recompiled.

COMPILE Required clause used to force the recompilation of the package
specification, package body, or both.

[PACKAGE|
SPECIFICATION|
BODY]

Specify PACKAGE to recompile both the package specification and
the body. Specify SPECIFICATION to recompile the package
specification. Specify BODY to recompile the package body.

PACKAGE is the default.

compiler_parameters_
clause

Use this optional clause to specify a value for one of the PL/SQL
persistent compiler parameters. The PL/SQL persistent compiler
parameters are PLSQL_OPTIMIZE_LEVEL,
PLSCOPE_SETTINGS and NLS_LENGTH_SEMANTICS.

You can specify each parameter once in the statement.

If you omit a parameter from this clause and you specify REUSE
SETTINGS, then if a value was specified for the parameter in an
earlier compilation, TimesTen uses that earlier value. If you omit
a parameter and either you do not specify REUSE SETTINGS or
no value has been specified for the parameter in an earlier
compilation, then TimesTen obtains the value for the parameter
from the session environment.

REUSE SETTINGS Use this optional clause to prevent TimesTen from dropping and
reacquiring compiler switch settings. When you specify REUSE
SETTINGS, TimesTen preserves the existing settings and uses
them for the compilation of any parameters for which values are
not specified.

ALTER PACKAGE

SQL Statements 5-11

Description
■ When you recompile a package specification, TimesTen invalidates local objects

that depend on the specification, such as procedures that call procedures or
functions in the package. The body of the package also depends on the
specification. If you subsequently reference one of these dependent objects
without first explicitly recompiling it, then TimesTen recompiles it implicitly at
runtime.

■ When you recompile a package body, TimesTen does not invalidate objects that
depend on the package specification. TimesTen first recompiles objects upon
which the body depends, if any of those objects are invalid. If TimesTen recompiles
the body successfully, then the body become valid.

■ When you recompile a package, both the specification and the body are explicitly
recompiled. If there are no compilation errors, then the specification and body
become valid. If there are compilation errors, then TimesTen returns an error and
the package remains invalid.

See also
CREATE PACKAGE

ALTER PROCEDURE

5-12 Oracle TimesTen In-Memory Database SQL Reference

ALTER PROCEDURE

The ALTER PROCEDURE statement recompiles a standalone stored procedure.
Explicit recompilation eliminates the need for implicit runtime recompilation and
prevents associated runtime compilation errors and performance overhead.

To recompile a procedure that is part of a package, recompile the package using the
ALTER PACKAGE statement.

Required privilege
No privilege is required for the procedure owner.

ALTER ANY PROCEDURE for another user’s procedure.

SQL syntax
ALTER PROCEDURE [Owner.]ProcedureName COMPILE

[compiler_parameters_clause […]]
[REUSE SETTINGS]

Parameters
The ALTER PROCEDURE statement has the parameters:

Description
■ The ALTER PROCEDURE statement does not change the declaration or definition

of an existing procedure. To redeclare or redefine a procedure, use the CREATE
PROCEDURE statement.

■ TimesTen first recompiles objects upon which the procedure depends, if any of
those objects are invalid.

Parameter Description

[Owner.]ProcedureNam
e

Name of the procedure to be recompiled.

COMPILE Required keyword that causes recompilation of the procedure. If
the procedure does not compile successfully, use the ttIsql
command SHOW ERRORS to display the compiler error messages.

compiler_parameters_
clause

Use this optional clause to specify a value for one of the PL/SQL
persistent compiler parameters. The PL/SQL persistent compiler
parameters are PLSQL_OPTIMIZE_LEVEL,
PLSCOPE_SETTINGS and NLS_LENGTH_SEMANTICS.

You can specify each parameter once in the statement.

If you omit a parameter from this clause and you specify REUSE
SETTINGS, then if a value was specified for the parameter in an
earlier compilation, TimesTen uses that earlier value. If you omit
a parameter and either you do not specify REUSE SETTINGS or
no value has been specified for the parameter in an earlier
compilation, then TimesTen obtains the value for the parameter
from the session environment.

REUSE SETTINGS Use this optional clause to prevent TimesTen from dropping and
reacquiring compiler switch settings. When you specify REUSE
SETTINGS, TimesTen preserves the existing settings and uses
them for the compilation of any parameters for which values are
not specified.

ALTER PROCEDURE

SQL Statements 5-13

■ TimesTen also invalidates any objects that depend on the procedure, such as
procedures that call the recompiled procedure or package bodies that define
procedures that call the recompiled procedure.

■ If TimesTen recompiles the procedure successfully, then the procedure becomes
valid. If recompiling the procedure results in compilation errors, then TimesTen
returns an error and the procedure remains invalid. Use the ttIsql command
SHOW ERRORS to display compilation errors.

■ During recompilation, TimesTen drops all persistent compiler settings, retrieves
them again from the session, and stores them at the end of compilation. To avoid
this process, specify the REUSE SETTINGS clause.

Examples
Query the system view USER_PLSQL_OBJECT_SETTINGS to check
PLSQL_OPTIMIZE_LEVEL and PLSCOPE_SETTINGS for procedure query_emp.
Alter query_emp by changing PLSQL_OPTIMIZE_LEVEL to 3. Verify results.

Command> SELECT PLSQL_OPTIMIZE_LEVEL, PLSCOPE_SETTINGS
 > FROM user_plsql_object_settings WHERE name = 'QUERY_EMP';
< 2, IDENTIFIERS:NONE >
1 row found.

Command> ALTER PROCEDURE query_emp COMPILE PLSQL_OPTIMIZE_LEVEL = 3;

Procedure altered.

Command> SELECT PLSQL_OPTIMIZE_LEVEL, PLSCOPE_SETTINGS
 > FROM user_plsql_object_settings WHERE name = 'QUERY_EMP';
< 3, IDENTIFIERS:NONE >
1 row found.

See also
CREATE PROCEDURE

ALTER REPLICATION

5-14 Oracle TimesTen In-Memory Database SQL Reference

ALTER REPLICATION

The ALTER REPLICATION statement adds, alters, or drops replication elements and
changes the replication attributes of participating data stores.

Most ALTER REPLICATION operations are supported only when the replication agent
is stopped (ttAdmin -repStop). However, it is possible to dynamically add a
subscriber data store to a replication scheme while the replication agent is running. See
"Altering Replication" in Oracle TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide for more information.

Required privilege
ADMIN

SQL syntax
The ALTER REPLICATION statement has the syntax:

ALTER REPLICATION [Owner.]ReplicationSchemeName
ElementOperation [...] | StoreOperation |
NetworkOperation [...]

Specify ElementOperation one or more times:

ADD ELEMENT ElementName
{DATASTORE | {TABLE [Owner.]TableName [CheckConflicts]} |

SEQUENCE [Owner.]SequenceName}
{ MASTER | PROPAGATOR } FullStoreName
{ SUBSCRIBER FullStoreName [, …]

[ReturnServiceAttribute] } […] }
{ INCLUDE | EXCLUDE }{TABLE [[Owner.]TableName[,...]] |

CACHE GROUP [[Owner.]CacheGroupName[,...]]|
SEQUENCE [[Owner.]SequenceName[,...]]}[,...]

ALTER ELEMENT { ElementName | * IN FullStoreName]
ADD SUBSCRIBER FullStoreName [,...[ReturnServiceAttribute] |

ALTER SUBSCRIBER FullStoreName [, …] |
SET [ReturnServiceAttribute] |

DROP SUBSCRIBER FullStoreName [, …]
ALTER ELEMENT * IN FullStoreName

SET { MASTER | PROPAGATOR } FullStoreName
ALTER ELEMENT ElementName

{SET NAME NewElementName | SET CheckConflicts}
ALTER ELEMENT ElementName

{ INCLUDE | EXCLUDE }{TABLE [Owner.]TableName |
CACHE GROUP [Owner.]CacheGroupName |
SEQUENCE [Owner.]SequenceName}[,...]

DROP ELEMENT { ElementName | * IN FullStoreName }

CheckConflicts can only be set when replicating TABLE elements. The syntax is
described in "CHECK CONFLICTS" on page 5-89.

Syntax for ReturnServiceAttribute is:

{ RETURN RECEIPT [BY REQUEST] | NO RETURN }

StoreOperation clauses:

ADD STORE FullStoreName [StoreAttribute […]]
ALTER STORE FullStoreName SET StoreAttribute […]

ALTER REPLICATION

SQL Statements 5-15

Syntax for the StoreAttribute is:

[DISABLE RETURN {SUBSCRIBER | ALL} NumFailures]
[RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED]
[DURABLE COMMIT {ON | OFF}]
[RESUME RETURN MilliSeconds]
[LOCAL COMMIT ACTION {NO ACTION| COMMIT}]
[RETURN WAIT TIME Seconds]
[COMPRESS TRAFFIC {ON | OFF}]
[PORT PortNumber]
[TIMEOUT Seconds]
[FAILTHRESHOLD Value]
[CONFLICT REPORTING SUSPEND AT Value]
[CONFLICT REPORTING RESUME AT Value]
[TABLE DEFINITION CHECKING {EXACT|RELAXED}]

Specify NetworkOperation one or more times:

ADD ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }

 PRIORITY Priority } [...]
DROP ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName

{ MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost } [...]

Parameters
The ALTER REPLICATION statement has the parameters:

Parameter Description

[Owner.]ReplicationScheme
Name

Name assigned to the replication scheme.

ADD ELEMENT ElementName Adds a new ELEMENT to the existing replication scheme.
ElementName is an identifier of up to 30 characters. With
DATASTORE elements, the ElementName must be
unique with respect to other DATASTORE element names
within the first 20 chars.

If the ELEMENT is a DATASTORE, all tables and cache
groups are included in the data store. SEQUENCE
elements that are part of the data store do not have their
return services modified by this statement.

ADD ELEMENT ElementName
DATASTORE

{INCLUDE | EXCLUDE}

{TABLE [[Owner.]TableName
[,...]]|

CACHE GROUP
[[Owner.]CacheGroupName
[,...]]|

SEQUENCE
[[Owner.]SequenceName[,..
.]]} [,...]

Adds a new DATASTORE ELEMENT to the existing
replication scheme. ElementName is an identifier of up
to 30 characters. With DATASTORE elements, the
ElementName must be unique with respect to other
DATASTORE element names within the first 20 chars.

INCLUDE includes in the data store only the tables and
cache groups listed. Use one INCLUDE clause for each
object type (table, cache group or sequence).

EXCLUDE includes in the data store all tables and cache
groups except the tables, cache groups and sequences
listed. Use one EXCLUDE clause for each object type
(table, cache group or sequence).

If the element is a sequence, RETURN attributes are not
applied, no conflict checking is supported and sequences
that cycle return an error.

ADD SUBSCRIBER
FullStoreName

Indicates an additional subscriber data store.
FullStoreName is the data store file name specified in
the DataStore attribute of the DSN description.

ALTER REPLICATION

5-16 Oracle TimesTen In-Memory Database SQL Reference

ALTER ELEMENT * IN
FullStoreName

Makes a change to all elements for which
FullStoreName is the MASTER or PROPAGATOR.
FullStoreName is the data store file name specified in
the DataStore attribute of the DSN description.

This syntax can be used on a set of element names to:

■ Add, alter, or drop subscribers.

■ Set the MASTER or PROPAGATOR status of the
element set.

SEQUENCE elements that are part of the data store being
altered do not have their return services modified by this
statement.

ALTER ELEMENT ElementName Name of the element to which a subscriber is to be added
or dropped.

ALTER ELEMENT

ElementName1

SET NAME ElementName2

Renames ElementName1 with the name ElementName2.
You can only rename elements of type TABLE.

ALTER ELEMENT ElementName

{INCLUDE|EXCLUDE}

{TABLE [Owner.]TableName |

CACHE GROUP
[Owner.]CacheGroupName |

SEQUENCE
[Owner.]SequenceName}
[,...]

ElementName is the name of the element to be altered.

INCLUDE adds to the data store the tables and cache
groups listed. Use one INCLUDE clause for each object
type (table or cache group).

EXCLUDE removes from the data store the tables and
cache groups listed. Use one EXCLUDE clause for each
object type (table, cache group or sequence).

If the element is a sequence, RETURN attributes are not
applied, no conflict checking is supported and sequences
that cycle return an error.

ALTER SUBSCRIBER
FullStoreName

SET RETURN RECEIPT

[BY REQUEST]|NO RETURN

Indicates an alteration to a subscriber data store to enable,
disable, or change the return receipt service.
FullStoreName is the data store file name specified in
the DataStore attribute of the DSN description.

CheckConflicts Check for replication conflicts when simultaneously
writing to bidirectionally replicating TABLE elements
between data stores. You cannot check for conflicts when
replicating elements of type DATASTORE. See "CHECK
CONFLICTS" on page 5-89.

COMPRESS TRAFFIC {ON |
OFF}

Compress replicated traffic to reduce the amount of
network bandwidth. ON specifies that all replicated traffic
for the data store defined by STORE be compressed. OFF
(the default) specifies no compression. See "Compressing
replicated traffic" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide for details.

CONFLICT REPORTING
SUSPEND AT Value

Suspends conflict resolution reporting.

Value is a non-negative integer. The default is 0 and
means never suspend. Conflict reporting is suspended
when the rate of conflict exceeds Value. If you set Value
to 0, conflict reporting suspension is turned off.

Use this clause for table level replication.

Parameter Description

ALTER REPLICATION

SQL Statements 5-17

CONFLICT REPORTING RESUME
AT Value

Resumes conflict resolution reporting.

Value is a non-negative integer. Conflict reporting is
resumed when the rate of conflict falls below Value. The
default is 1.

Use this clause for table level replication.

DISABLE RETURN {SUBSCRIBER
| ALL} NumFailures

Set the return service failure policy so that return service
blocking is disabled after the number of timeouts specified
by NumFailures. Selecting SUBSCRIBER applies this
policy only to the subscriber that fails to acknowledge
replicated updates within the set timeout period. ALL
applies this policy to all subscribers should any of the
subscribers fail to respond. This failure policy can be
specified for either the RETURN RECEIPT or RETURN
TWOSAFE service.

If DISABLE RETURN is specified but RESUME RETURN is
not specified, the return services remain off until the
replication agent for the data store has been restarted.

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

DURABLE COMMIT {ON | OFF} Set to override the DurableCommits setting on a data
store and enable durable commit when return service
blocking has been disabled by DISABLE RETURN.

DROP ELEMENT * IN
FullStoreName

Deletes the replication description of all elements for
which FullStoreName is the MASTER.
FullStoreName is the data store file name specified in
the DataStore attribute of the DSN description.

DROP ELEMENT ElementName Deletes the replication description of ElementName.

DROP SUBSCRIBER
FullStoreName

Indicates that updates should no longer be sent to the
specified subscriber data store. This operation fails if your
replication scheme has only one subscriber.
FullStoreName is the data store file name specified in
the DataStore attribute of the DSN description.

FAILTHRESHOLD Value The number of log files that can accumulate for a
subscriber data store. If this value is exceeded, the
subscriber is set to the Failed state.

The value 0 means "No Limit." This is the default.

See "Setting the log failure threshold" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide
for more information.

Parameter Description

ALTER REPLICATION

5-18 Oracle TimesTen In-Memory Database SQL Reference

FullStoreName The data store, specified as one of the following:

■ SELF

■ The prefix of the data store file name

For example, if the data store path is
directory/subdirectory/data.ds0, then data is
the data store name.

This is the data store file name specified in the
DataStore attribute of the DSN description with
optional host ID in the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host name
assigned to one or more IP addresses, as described in
"Configuring host IP addresses" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.
Host names containing special characters must be
surrounded by double quotes. For example:
"MyHost-500".

LOCAL COMMIT ACTION

{NO ACTION | COMMIT}

Specifies the default action to be taken for a RETURN
TWOSAFE transaction in the event of a timeout.

NO ACTION: On timeout, the commit function returns to
the application, leaving the transaction in the same state it
was in when it entered the commit call, with the exception
that the application is not able to update any replicated
tables. The application can only reissue the commit. The
transaction may not be rolled back. This is the default.

COMMIT: On timeout, the commit function attempts to
perform a COMMIT to end the transaction locally. No
more operations are possible on the same transaction.

This setting can be overridden for specific transactions by
calling the ttRepSyncSet procedure with the
localAction parameter.

MASTER FullStoreName The data store on which applications update the specified
ELEMENT. The MASTER data store sends updates to its
SUBSCRIBER data stores. FullStoreName is the data
store file name specified in the DataStore attribute of the
DSN description.

NO RETURN Specifies that no return service is to be used. This is the
default.

For details on the use of the return services, see "Using a
return service" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

PORT PortNumber The TCP/IP port number on which the replication agent
on this data store listens for connections. If not specified,
the replication agent allocates a port number
automatically.

All TimesTen data stores that replicate to each other must
use the same port number.

PROPAGATOR FullStoreName The data store that receives replicated updates and passes
them on to other data stores.

Parameter Description

ALTER REPLICATION

SQL Statements 5-19

RESUME RETURN MilliSeconds If return service blocking has been disabled by DISABLE
RETURN, this attribute sets the policy on when to
re-enable return service blocking. Return service blocking
is re-enabled as soon as the failed subscriber
acknowledges the replicated update in a period of time
that is less than the specified MilliSeconds.

If DISABLE RETURN is specified but RESUME RETURN is
not specified, the return services remain off until the
replication agent for the data store has been restarted.

RETURN RECEIPT [BY
REQUEST]

Enables the return receipt service, so that applications that
commit a transaction to a master data store are blocked
until the transaction is received by all subscribers.

RETURN RECEIPT applies the service to all transactions.
If you specify RETURN RECEIPT BY REQUEST, you can
use the ttRepSyncSet procedure to enable the return
receipt service for selected transactions. For details on the
use of the return services, see "Using a return service" in
Oracle TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide.

RETURN SERVICES {ON |
OFF} WHEN [REPLICATION]
STOPPED

Set the return service failure policy so that return service
blocking is either enabled or disabled when the replication
agent is in the "stop" or "pause" state.

OFF is the default when using the RETURN RECEIPT
service. ON is the default when using the RETURN
TWOSAFE service.

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

RETURN TWOSAFE [BY
REQUEST]

Enables the return twosafe service, so that applications
that commit a transaction to a master data store are
blocked until the transaction is committed on all
subscribers.

RETURN TWOSAFE applies the service to all transactions.
If you specify RETURN TWOSAFE BY REQUEST, you can
use the ttRepSyncSet procedure to enable the return
receipt service for selected transactions. For details on the
use of the return services, see "Using a return service" in
Oracle TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide.

RETURN WAIT TIME Seconds Specifies the number of seconds to wait for return service
acknowledgement. The default value is 10 seconds. A
value of '0' means there is no timeout. Your application can
override this timeout setting by calling the
ttRepSyncSet procedure with the returnWait
parameter

SET {MASTER | PROPAGATOR}
FullStoreName

Sets the given data store to be the MASTER or
PROPAGATOR of the given elements. The
FullStoreName must the be data store's file base name.

SUBSCRIBER FullStoreName A data store that receives updates from the MASTER data
stores. FullStoreName is the data store file name
specified in the DataStore attribute of the DSN
description.

Parameter Description

ALTER REPLICATION

5-20 Oracle TimesTen In-Memory Database SQL Reference

Description
■ ALTER ELEMENT DROP SUBSCRIBER deletes a subscriber for a particular

replication element.

■ ALTER ELEMENT SET NAME may be used to change the name of a replication
element when it conflicts with one already defined at another data store. SET
NAME does not admit the use of * IN FullStoreName. The FullStoreName
must the be data store's file base name. For example, if the data store file name is
data.ds0, then data is the file base name.

■ ALTER ELEMENT SET MASTER may be used to change the master data store for
replication elements. The * IN FullStoreName option must be used for the
MASTER operation. That is, a master data store must transfer ownership of all of
its replication elements, thereby giving up its master role entirely. Typically, this
option is used in ALTER REPLICATION statements requested at SUBSCRIBER
data stores after the failure of a (common) MASTER.

TABLE DEFINITION CHECKING
{EXACT|RELAXED}

Specifies type of table definition checking that occurs on
the subscriber:

■ EXACT - The tables must be identical on master and
subscriber.

■ RELAXED - The tables must have the same key
definition, number of columns and column data
types.

The default is EXACT.

TIMEOUT Seconds The amount of time a data store waits for a response from
another data store before resending the message. Default:
120 seconds.

ADD ROUTE MASTER
FullStoreName SUBSCRIBER
FullStoreName

Adds NetworkOperation to replication scheme. Allows
you to control the network interface that a master store
uses for every outbound connection to each of its
subscriber stores.

Can be specified more than once.

For FullStoreName, ON "host" must be specified.

DROP ROUTE MASTER
FullStoreName SUBSCRIBER
FullStoreName

Drops NetworkOperation from replication scheme.

Can be specified more than once.

For FullStoreName, ON "host" must be specified.

MASTERIP MasterHost |
SUBSCRIBERIP
SubscriberHost

MasterHost and SubscriberHost are the IP addresses
for the network interface on the master and subscriber
stores. Specify in dot notation or canonical format or in
colon notation for IPV6.

Clause can be specified more than once. Valid for both
ADD and DROP ROUTE MASTER.

PRIORITY Priority Variable expressed as an integer from 1 to 99. Denotes the
priority of the IP address. Lower integral values have
higher priority. An error is returned if multiple addresses
with the same priority are specified. Controls the order in
which multiple IP addresses are used to establish peer
connections.

Required syntax of NetworkOperation clause. Follows
MASTERIP MasterHost | SUBSCRIBERIP
SubscriberHost clause.

Parameter Description

ALTER REPLICATION

SQL Statements 5-21

To transfer ownership of the master elements to the subscriber:

■ Manually drop the replicated elements by executing an ALTER REPLICATION
DROP ELEMENT statement for each replicated table.

■ Use ALTER REPLICATION ADD ELEMENT to add each table back to the
replication scheme, with the newly designated MASTER / SUBSCRIBER roles.

■ ALTER REPLICATION ALTER ELEMENT SET MASTER does not automatically
retain the old master as a subscriber in the scheme. If this is desired, execute an
ALTER REPLICATION ALTER ELEMENT ADD SUBSCRIBER statement.

■ Stop the replication agent before you use the NetworkOperation clause.

Examples
This example sets up replication for an additional table westleads that is updated on
data store west and replicated to data store east.

ALTER REPLICATION r1
ADD ELEMENT e3 TABLE westleads
MASTER west ON "westcoast"
SUBSCRIBER east ON "eastcoast";

This example adds an additional subscriber (backup) to table westleads.

ALTER REPLICATION r1
ALTER ELEMENT e3
ADD SUBSCRIBER backup ON "backupserver";

This example changes the element name of table westleads from e3 to
newelementname.

ALTER REPLICATION r1
ALTER ELEMENT e3
SET NAME newelementname;

This example makes newwest the master for all elements for which west currently is
the master.

ALTER REPLICATION r1
ALTER ELEMENT * IN west
SET MASTER newwest;

This element changes the port number for east.

ALTER REPLICATION r1
ALTER STORE east ON "eastcoast" SET PORT 22251;

This example adds my.tab1 table to the ds1 data store element in my.rep1
replication scheme.

ALTER REPLICATION my.rep1
ALTER ELEMENT ds1 DATASTORE

INCLUDE TABLE my.tab1;

Note: There is no ALTER ELEMENT DROP MASTER. Each
replication element must have exactly one MASTER data store, and
the currently designated MASTER cannot be deleted from the
replication scheme.

ALTER REPLICATION

5-22 Oracle TimesTen In-Memory Database SQL Reference

This example adds my.cg1 cache group to ds1 data store in my.rep1 replication
scheme.

ALTER REPLICATION my.rep1
ALTER ELEMENT ds1 DATASTORE

INCLUDE CACHE GROUP my.cg1;

This example adds ds1 data store to my.rep1 replication scheme. Include my.tab2
table, my.cg2 cache group, and my.cg3 cache group in the data store.

ALTER REPLICATION my.rep1
ADD ELEMENT ds1 DATASTORE

MASTER rep2
SUBSCRIBER rep1, rep3
INCLUDE TABLE my.tab2
INCLUDE CACHE GROUP my.cg2, my.cg3;

This example adds ds2 data store to a replication scheme but exclude my.tab1 table,
my.cg0 cache group and my.cg1 cache group.

ALTER REPLICATION my.rep1
ADD ELEMENT ds2 DATASTORE

MASTER rep2
SUBSCRIBER rep1
EXCLUDE TABLE my.tab1
EXCLUDE CACHE GROUP my.cg0, my.cg1;

Add NetworkOperation clause:

ALTER REPLICATION r
ADD ROUTE MASTER rep1 ON "machine1" SUBSCRIBER rep2 ON "machine2"
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2"

PRIORITY 1
MASTERIP "3.3.3.3" PRIORITY 2 SUBSCRIBERIP "4.4.4.4" PRIORITY 2;

Drop NetworkOperation clause:

ALTER REPLICATION r
DROP ROUTE MASTER repl ON "machine1" SUBSCRIBER rep2 ON "machine2"
MASTERIP "1.1.1.1" SUBSCRIBERIP "2.2.2.2"
MASTERIP "3.3.3.3" SUBSCRIBERIP "4.4.4.4";

See also
ALTER ACTIVE STANDBY PAIR
CREATE ACTIVE STANDBY PAIR
CREATE REPLICATION
DROP ACTIVE STANDBY PAIR
DROP REPLICATION

To drop a table from a data store, see "Altering a replicated table" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.

ALTER SESSION

SQL Statements 5-23

ALTER SESSION

The ALTER SESSION statement changes session parameters dynamically.

Required privilege
 None

SQL syntax
ALTER SESSION SET
 {NLS_SORT = {BINARY| SortName} |
 NLS_LENGTH_SEMANTICS = {BYTE|CHAR} |
 NLS_NCHAR_CONV_EXCP = {TRUE|FALSE} |
 ISOLATION_LEVEL = {SERIALIZABLE | READ COMMITTED} |
 PLSQL_TIMEOUT = n |
 PLSQL_OPTIMIZE_LEVEL = {0|1|2|3}|
 PLSCOPE_SETTINGS = {'IDENTIFIERS:ALL'|'IDENTIFIERS:NONE'} |
 PLSQL_CONN_MEM_LIMIT = n
 } ...

Parameters
The ALTER SESSION statement has the parameters:

Parameter Description

NLS_SORT={BINARY|
SortName}

Indicates which collation sequence to use for linguistic
comparisons.

Append _CI or _AI to either BINARY or the SortName value if
you wish to do case-insensitive or accent-insensitive sorting.

If you do not specify NLS_SORT, the default is BINARY.

For a complete list of supported values for SortName, see
"Supported linguistic sorts" in Oracle TimesTen In-Memory Database
Operations Guide.

For more information on case-insensitive or accent-insensitive
sorting, see "Case-insensitive and accent-insensitive linguistic
sorts" in Oracle TimesTen In-Memory Database Operations Guide.

NLS_LENGTH_SEMANTICS
={BYTE|CHAR}

Sets the default length semantics configuration. BYTE indicates
byte length semantics. CHAR indicates character length
semantics. The default is BYTE.

For more information on length semantics, see "Length semantics
and data storage" in Oracle TimesTen In-Memory Database
Operations Guide.

NLS_NCHAR_CONV_EXCP
= {TRUE|FALSE}

Determines whether an error should be reported when there is
data loss during an implicit or explicit character type conversion
between NCHAR/NVARCHAR2 data and CHAR/VARCHAR2
data. Specify TRUE to enable error reporting. Specify FALSE to
not report errors. The default is FALSE.

ISOLATION_LEVEL =
{SERIALIZABLE|READ
COMMITTED}

Sets isolation level. Change takes effect starting with next
transaction.

For a descriptions of the isolation levels, see Oracle TimesTen
In-Memory Database Operations Guide.

ALTER SESSION

5-24 Oracle TimesTen In-Memory Database SQL Reference

Description
■ The ALTER SESSION statement affects commands that are subsequently executed

by the session. The new session parameters take effect immediately.

■ The NLS_SORT setting affects materialized views and cache group maintenance.
Use the NLSSORT() SQL function rather than relying on the NLS_SORT setting.

■ Character length and byte length semantics are supported to resolve potential
ambiguity regarding column length and storage size. Multibyte encoding
character sets are supported (For example, UTF-8 or AL32UTF8). Multibyte
encodings require varying amounts of storage per character depending on the
character. For example, an UTF-8 character may require from 1 to 4 bytes.

If, for example, a column is defined as CHAR (10), you may assume that the 10
characters fit in this column regardless of character set encoding. However, for
UTF-8 character set encoding, up to 40 bytes are required. TimesTen supports
character length and byte length semantics to avoid such ambiguity.

■ Operations involving character comparisons support linguistic sensitive collating
sequences. Case-insensitive sorts may affect DISTINCT value interpretation.
Supported collating sequence sensitive operations:

PLSQL_TIMEOUT= n Controls how long PL/SQL procedures run before being
automatically terminated. n represents the time, in seconds.
Specify 0 for no time limit or any positive integer. The default is
30.

When you modify this value, the new value impacts PL/SQL
program units that are currently running as well as any other
program units subsequently executed in the same connection.

If PL/SQL is not enabled in your database and you specify this
attribute, TimesTen throws an error.

PLSQL_OPTIMIZE_LEVEL
= {0|1|2|3}

Specifies the optimization level used to compile PL/SQL library
units. The higher the setting, the more effort the compiler makes
to optimize PL/SQL library units. Possible values are 0, 1, 2 or 3.
The default is 2.

If PL/SQL is not enabled in your database and you specify this
attribute, TimesTen returns an error.

For more information, see Oracle Database PL/SQL Language
Reference.

PLSCOPE_SETTINGS =
'{IDENTIFIERS:ALL
|IDENTIFIERS:NONE}'

Controls whether or not the PL/SQL compiler generates
cross-reference information. Specify IDENTIFIERS:ALL to
generate cross-reference information. The default is
IDENTIFIERS:NONE.

If PL/SQL is not enabled in your database and you specify this
attribute, TimesTen returns an error.

For more information, see Oracle Database PL/SQL Language
Reference

PLSQL_CONN_MEM_LIMIT
= n

Specifies the maximum amount of process heap memory that
PL/SQL can use for this connection. n is an integer expressed in
megabytes. The default is 100.

If PL/SQL is not enabled in your database and you specify this
attribute, TimesTen returns an error.

For more information, see Oracle Database PL/SQL Language
Reference

Parameter Description

ALTER SESSION

SQL Statements 5-25

– MIN,MAX

– BETWEEN

– =,!=, >, >=,<,<=

– DISTINCT

– CASE

– GROUP BY

– HAVING

– ORDER BY

– IN

– LIKE

■ Primary key indexes are based on the BINARY collating sequence. You cannot use
nonbinary NLS_SORT with equality searches on the primary key index.

■ Implicit and explicit conversions between CHAR and NCHAR are supported.

■ Conversions between CHAR and NCHAR are not allowed when using the
TIMESTEN8 character set.

■ You can use the SQL string functions with the supported character sets. For
example, UPPER and LOWER functions support non-ASCII CHAR and
VARCHAR2 characters as well as NCHAR and NVARCHAR2 characters.

■ TIMESTEN8 character set restrictions:

– Character set conversions are not allowed.

– BINARY is the only acceptable collating sequence.

– CHAR semantics are ignored. Characters are assumed to be single-byte.

– UPPER and LOWER functions support ASCII characters only. Results for
non-ASCII characters are undefined. TimesTen does not return an error.

■ NLS_SORT settings other than BINARY could have a performance impact on
character operations.

■ Choice of character set could have an impact on memory consumption for CHAR
and VARCHAR2 column data.

■ The character sets of all data stores involved in a replication scheme must match.

Examples
Use the ALTER SESSION statement to change PLSQL_TIMEOUT to 60 seconds. Use a
second ALTER SESSION statement to change PLSQL_OPTIMIZE_LEVEL to 3. Then
call ttConfiguration to display the new values.

Command> ALTER SESSION SET PLSQL_TIMEOUT = 60;

Session altered.

Command> ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 3;

Session altered.

Command> CALL TTCONFIGURATION ();
< CkptFrequency, 600 >
< CkptLogVolume, 0 >

ALTER SESSION

5-26 Oracle TimesTen In-Memory Database SQL Reference

< CkptRate, 0 >
...
< PLSQL_OPTIMIZE_LEVEL, 3 >
< PLSQL_TIMEOUT, 60 >
...
47 rows found.

In this example, set PLSQL_TIMEOUT to 20 seconds. Attempt to execute a program
that loops indefinitely. In 20 seconds, execution is terminated and an error is returned.

Command> ALTER SESSION SET PLSQL_TIMEOUT = 20;

Command> DECLARE v_timeout NUMBER;
 > BEGIN
 > LOOP
 > v_timeout :=0;
 > EXIT WHEN v_timeout < 0;
 > END LOOP;
 > END;
 > /
 8509: PL/SQL execution terminated; PLSQL_TIMEOUT exceeded

Call ttConfiguration to display the current PLSCOPE_SETTINGS value. Use the
ALTER SESSION statement to change the PLSCOPE_SETTINGS value to
IDENTIFIERS:ALL. Create a dummy procedure p. Query the system view
SYS.USER_PLSQL_OBJECT_SETTINGS to confirm that the new setting is applied to
procedure p.

Command> CALL TTCONFIGURATION ();
< CkptFrequency, 600 >
< CkptLogVolume, 0 >
< CkptRate, 0 >
...
< PLSCOPE_SETTINGS, IDENTIFIERS:NONE >
...
47 rows found.

Command> ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';

Session altered.

Command> CREATE OR REPLACE PROCEDURE p IS
 > BEGIN
 > NULL;
 > END;
 > /

Procedure created.

Command> SELECT PLSCOPE_SETTINGS FROM SYS.USER_PLSQL_OBJECT_SETTINGS WHERE
 > NAME = 'p';
< IDENTIFIERS:ALL >
1 row found.

The following example uses the ALTER SESSION statement to change the NLS_SORT
setting from BINARY to BINARY_CI to BINARY_AI. The database and connection
character sets are WE8ISO8859P1.

Command> connect "dsn=cs;ConnectionCharacterSet=WE8ISO8859P1";
Connection successful: DSN=cs;UID=user;DataStore=/datastore/user/cs;
DatabaseCharacterSet=WE8ISO8859P1;

ALTER SESSION

SQL Statements 5-27

ConnectionCharacterSet=WE8ISO8859P1;PermSize=32;TypeMode=0;
(Default setting AutoCommit=1)
Command>#Create the Table
Command> CREATE TABLE collatingdemo (letter VARCHAR2 (10));
Command>#Insert values
Command> INSERT INTO collatingdemo VALUES ('a');
1 row inserted.
Command> INSERT INTO collatingdemo VALUES ('A');
1 row inserted.
Command> INSERT INTO collatingdemo VALUES ('Y');
1 row inserted.
Command> INSERT INTO collatingdemo VALUES ('ä');
1 row inserted.
Command>#SELECT
Command> SELECT * FROM collatingdemo;
< a >
< A >
< Y >
< ä >
4 rows found.
Command>#SELECT with ORDER BY
Command> SELECT * FROM collatingdemo ORDER BY letter;
< A >
< Y >
< a >
< ä >
4 rows found.
Command>#set NLS_SORT to BINARY_CI and SELECT
Command> ALTER SESSION SET NLS_SORT = BINARY_CI;
Command> SELECT * FROM collatingdemo ORDER BY letter;
< a >
< A >
< Y >
< Ä >
< ä >
4 rows found.
Command>#Set NLS_SORT to BINARY_AI and SELECT
Command> ALTER SESSION SET NLS_SORT = BINARY_AI;
Command> SELECT * FROM collatingdemo ORDER BY letter;
< ä >
< a >
< A >
< Y >
4 rows found.

ALTER TABLE

5-28 Oracle TimesTen In-Memory Database SQL Reference

ALTER TABLE

The ALTER TABLE statement changes an existing table definition.

Required privilege
No privilege is required for the table owner.

ALTER ANY TABLE for another user’s table.

For ALTER TABLE...ADD FOREIGN KEY, the owner of the altered table must have the
REFERENCES privilege on the table referenced by the foreign key clause.

SQL syntax
To add columns:

ALTER TABLE [Owner.]TableName
ADD [COLUMN] ColumnName ColumnDataType
[DEFAULT DefaultVal] [[NOT] INLINE] [UNIQUE] [NULL]

or

ALTER TABLE [Owner.]TableName
ADD (ColumnName ColumnDataType
[DEFAULT DefaultVal] [[NOT] INLINE] [UNIQUE] [NULL] [, ...])

To remove columns:

ALTER TABLE [Owner.]TableName
DROP [COLUMN] ColumnName

or

ALTER TABLE [Owner.]TableName
DROP (ColumnName [, ...])

To add a primary key constraint:

ALTER TABLE [Owner.]TableName ADD CONSTRAINT ConstraintName
PRIMARY KEY (ColumnName [,...])
USE HASH INDEX PAGES = {RowPages | CURRENT}]

To add a foreign key and optionally add ON DELETE CASCADE:

ALTER TABLE [Owner.]TableName
ADD [CONSTRAINT ForeignKeyName] FOREIGN KEY

(ColumnName [,...]) REFERENCES RefTableName
[(ColumnName [,...])] [ON DELETE CASCADE]

To remove a foreign key:

ALTER TABLE [Owner.]TableName
DROP CONSTRAINT ForeignKeyName

To resize a hash index:

ALTER TABLE [Owner.]TableName
SET PAGES = {RowPages | CURRENT}

To change the primary key to use a hash index:

ALTER TABLE

SQL Statements 5-29

ALTER TABLE [Owner.]TableName
USE HASH INDEX PAGES = {RowPages | CURRENT}

To change the primary key to use a range index:

ALTER TABLE [Owner.]TableName
USE RANGE INDEX

To change the default value of a column:

ALTER TABLE [Owner.]TableName
MODIFY (ColumnName DEFAULT DefaultVal)

To add or drop a UNIQUE constraint on a column:

ALTER TABLE Owner.]TableName
{ADD | DROP} UNIQUE (ColumnName)

To remove the default value of a column that is nullable, by changing it to NULL:

ALTER TABLE [Owner.]TableName
MODIFY (ColumnName DEFAULT NULL)

To add LRU aging:

ALTER TABLE [Owner.]TableName
ADD AGING LRU [ON | OFF]

To add time-based aging:

ALTER TABLE [Owner.]TableName
ADD AGING USE ColumnName LIFETIME num1

{MINUTE[S] | HOUR[S] | DAY[S]}
[CYCLE num2 {MINUTE[S] | HOUR[S] | DAY[S] }]
[ON | OFF]

To change the aging state:

ALTER TABLE [Owner.]TableName
SET AGING {ON | OFF}

To drop aging:

ALTER TABLE [Owner.]TableName
DROP AGING

To change LIFETIME for time-based aging:

ALTER TABLE [Owner.]TableName
SET AGING LIFETIME num1 {MINUTE[S] | HOUR[S] | DAY[S]}

To change CYCLE for time-based aging:

ALTER TABLE [Owner.]TableName
SET AGING CYCLE num2 {MINUTE[S] | HOUR[S] | DAY[S]}

Parameters
The ALTER TABLE statement has the parameters:

Parameter Description

[Owner.] TableName Identifies the table to be altered.

ALTER TABLE

5-30 Oracle TimesTen In-Memory Database SQL Reference

UNIQUE Specifies that in the column ColumnName each row must contain a
unique value.

MODIFY Specifies that an attribute of a given column is to be changed to a
new value.

DEFAULT
[DefaultVal |NULL]

Specifies that the column has a default value, DefaultVal. If
NULL, specifies that the default value of the columns is to be
dropped. If a column with a default value of SYSDATE is added, the
value of the column of the existing rows only is the system date at
the time the column was added. If the default value is one of the
USER functions the column value is the user value of the session
that executed the ALTER TABLE statement.

Altering the default value of a column has no impact on existing
rows.

ColumnName Name of the column to for which the UNIQUE CONSTRAINT or
default value is to be changed. A new column cannot have the same
name as an existing column or another new column.

ColumnDataType Type of the column to be added. Some types require additional
parameters. See Chapter 1, "Data Types" for the data types that can
be specified.

INLINE|NOT INLINE By default, variable-length columns whose declared column length
is > 128 bytes are stored out of line. Variable-length columns whose
declared column length is <= 128 bytes are stored inline. The default
behavior can be overridden during table creation through the use of
the INLINE and NOT INLINE keywords.

ADD CONSTRAINT
ConstraintName
PRIMARY KEY
(ColumnName

[,...]) [USE
HASH INDEX PAGES =
{RowPages |
CURRENT}]

Adds a primary key constraint to the table. Columns of the primary
key must be defined as NOT NULL.

Specify ConstraintName as the name of the index used to enforce
the primary key constraint. Specify ColumnName as the name(s) of
the NOT NULL column(s) used for the primary key.

Specify the USE HASH INDEX clause to use a hash index for the
primary key. Specify either RowPages (as a positive constant) or
CURRENT to calculate the page count value. If you specify
CURRENT, the current number of rows in the table is used to
calculate the page count value.

See "Column Definition" on page 5-104 for a description of hash
indexes and pages.

CONSTRAINT Specifies that a foreign key is to be dropped. Optionally specifies
that an added foreign key is named by the user.

ForeignKeyName Name of the foreign key to be added or dropped. All foreign keys
are assigned a default name by the system if the name was not
specified by the user. Either the user-provided name or system name
can be specified in the DROP FOREIGN KEY clause.

FOREIGN KEY Specifies that a foreign key is to be added or dropped. See "FOREIGN
KEY" on page 5-101.

REFERENCES Specifies that the foreign key references another table.

RefTableName The name of the table that the foreign key references.

[ON DELETE

CASCADE]

Enables the ON DELETE CASCADE referential action. If specified,
when rows containing referenced key values are deleted from a
parent table, rows in child tables with dependent foreign key values
are also deleted.

USE HASH INDEX
PAGES = {RowPages
| CURRENT}

Specifies that a hash index is to be used for the primary key. If the
primary key already uses a hash index, then this clause is equivalent
to the SET PAGES clause.

Parameter Description

ALTER TABLE

SQL Statements 5-31

USE RANGE INDEX Specifies that a range index is to be used for the primary key. If the
primary key already uses a range index, TimesTen ignores this
clause.

SET PAGES Resizes the hash index based on the expected number of row pages
in the table. Each row page can contain up to 256 rows of data. This
number determines the number of hash buckets created for the hash
index. The minimum is 1. If your estimate is too small, performance
may be degraded. You can specify a constant (RowPages) or the
CURRENT number of row pages. See "Column Definition" on
page 5-104 for a description of hash indexes and pages.

RowPages The number of row pages expected.

CURRENT Use the number of row pages currently in use.

ADD AGING LRU [ON
| OFF]

Adds least recently used (LRU) aging to an existing table that has no
aging policy defined.

The LRU aging policy defines the type of aging (least recently used
(LRU)), the aging state (ON or OFF) and the LRU aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates that
the aging state is disabled and aging is not done automatically. In
both cases, the aging policy is defined. The default is ON.

LRU attributes are defined by calling the ttAgingLRUConfig
procedure. LRU attributes are not defined at the SQL level.

For more information about LRU aging, see "Implementing aging in
your tables" in Oracle TimesTen In-Memory Database Operations Guide.

ADD AGING USE
ColumnName...[ON|
OFF]

Adds time-based aging to an existing table that has no aging policy
defined.

The time-based aging policy defines the type of aging (time-based),
the aging state (ON or OFF) and the time-based aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates that
the aging state is disabled and aging is not done automatically. In
both cases, the aging policy is defined. The default is ON.

Time-based aging attributes are defined at the SQL level and are
specified by the LIFETIME and CYCLE clauses.

Specify ColumnName as the name of the column used for time-based
aging. Define the column as NOT NULL and of data type
TIMESTAMP or DATE. The value of this column is subtracted from
SYSDATE, truncated using the specified unit (minute, hour, day)
and then compared to the LIFETIME value. If the result is greater
than the LIFETIME value, then the row is a candidate for aging.

The values of the column used for aging are updated by your
applications. If the value of this column is unknown for some rows,
and you do not want the rows to be aged, define the column with a
large default value (the column cannot be NULL).

You can define your aging column with a data type of
TT_TIMESTAMP or TT_DATE. If you choose data type TT_DATE,
then you must specify the LIFETIME unit as days.

For more information about time-based aging, see "Implementing
aging in your tables" in Oracle TimesTen In-Memory Database
Operations Guide.

Parameter Description

ALTER TABLE

5-32 Oracle TimesTen In-Memory Database SQL Reference

Description
■ The ALTER TABLE statement cannot be used to alter a temporary table.

■ The ALTER TABLE statement cannot be used to alter a replicated table that is part
of a TWOSAFE BY REQUEST transaction. If DDLCommitBehavior=1, this
operation results in error 8051. If DDLCommitBehavior=0, the operation succeeds
because a commit is performed before the ALTER TABLE operation, resulting in

LIFETIME Num1
{MINUTE[S]
|HOUR[S]| DAY[S]

Specify the LIFETIME clause after the ADD AGING USE
ColumnName clause if you are adding the time-based aging policy to
an existing table. Specify the LIFETIME clause after the SET AGING
clause to change the LIFETIME setting.

The LIFETIME clause specifies the minimum amount of time data is
kept in cache.

Specify Num1 as a positive integer constant to indicate the unit of
time expressed in minutes, hours or days that rows should be kept
in cache. Rows that exceed the LIFETIME value are aged out
(deleted from the table). If you define your aging column with data
type TT_DATE, then you must specify DAYS as the LIFETIME unit.

The concept of time resolution is supported. If DAYS is specified as
the time resolution, then all rows whose timestamp belongs to the
same day are aged out at the same time. If HOURS is specified as the
time resolution, then all rows with timestamp values within that
hour are aged at the same time. A LIFETIME of 3 days is different
than a LIFETIME of 72 hours (3*24) or a LIFETIME of 432 minutes
(3*24*60).

CYCLE Num2
{MINUTE[S] |
HOUR[S] |DAY[S] }

Specify the optional CYCLE clause after the LIFETIME clause if you
are adding the time-based aging policy to an existing table.

CYCLE is a time-based aging attribute.

The CYCLE clause indicates how often the system should examine
rows to see if data exceeds the specified LIFETIME value and should
be aged out (deleted).

Specify Num2 as a positive integer constant.

If you do not specify the CYCLE clause, then the default value is 5
minutes. If you specify 0 for Num2, then aging is continuous and
the aging thread never sleeps.

If the aging state is OFF, then aging is not done automatically and
the CYCLE clause is ignored.

Specify the CYCLE clause after the SET AGING clause to change the
CYCLE setting.

SET AGING {ON|OFF} Changes the aging state. The aging policy must be previously
defined. ON enables automatic aging. OFF disables automatic aging.
If you wish to control aging with an external scheduler, then disable
aging and invoke the ttAgingScheduleNow built-in procedure.

DROP AGING Drops the aging policy from the table. After you define an aging
policy, you cannot alter it. Drop aging, then redefine.

SET AGING LIFETIME
Num1 {MINUTE[S] |
HOUR[S] |

DAY[S] }

Use this clause to change the LIFETIME for time-based aging.

Num1 must be a positive integer constant.

If you defined your aging column with data type TT_DATE, then
you must specify DAYS as the LIFETIME unit.

SET AGING CYCLE
Num2 {MINUTE[S] |
HOUR[S] |DAY[S]}

Use this clause to change the CYCLE for time-based aging.

Num2 must be a positive integer constant.

Parameter Description

ALTER TABLE

SQL Statements 5-33

the ALTER TABLE operation being in a new transaction which is not part of the
TWOSAFE BY REQUEST transaction.

■ The ALTER TABLE ADD [COLUMN] ColumnName statement adds one or more
new columns to an existing table. The new columns are added to the end of all
existing rows of the table in one new partition.

■ Columns referenced by materialized views cannot be dropped.

■ Only one partition is added to the table per statement regardless of the number of
columns added.

■ The new columns cannot be declared NOT NULL.

■ NULL is the initial value for all added columns, unless a default value is specified
for the new column.

■ The total number of columns in the table cannot exceed 255. In addition, the total
number of partitions in a table cannot exceed 255, one of which is used by
TimesTen.

■ Use the ADD CONSTRAINT ... PRIMARY KEY clause to add a primary key
constraint to a regular table or to a detailed or materialized view table. Do not use
this clause on a table that already has a primary key.

■ If you use the ADD CONSTRAINT... PRIMARY KEY clause to add a primary key
constraint, and you do not specify the USE HASH INDEX clause, then a range
index is used for the primary key constraint.

■ If a table is replicated and the replication agent is active, you cannot use the ADD
CONSTRAINT ... PRIMARY KEY clause. Stop the replication agent first.

■ Do not specify the ADD CONSTRAINT ... PRIMARY KEY clause on a global
temporary table.

■ Do not specify the ADD CONSTRAINT ... PRIMARY KEY clause on a cache group
table because cache group tables defined with a primary key must be defined in
the CREATE CACHE GROUP statement.

■ As the result of an ALTER TABLE ADD statement, an additional read occurs for
each new partition during queries. Therefore, altered tables may have slightly
degraded performance. The performance can only by restored by dropping and
recreating the table, or by using the ttMigrate create -c -noRepUpgrade
command, and restoring the table using the ttRestore -r -noRepUpgrade
command. Dropping the added column does not recover the lost performance or
decrease the number of partitions.

■ The ALTER TABLE DROP statement removes one or more columns from an
existing table. The dropped columns are removed from all current rows of the
table. Subsequent SQL statements must not attempt to make any use of the
dropped columns. You cannot drop columns that are in the table's primary key.
You cannot drop columns that are in any of the table's foreign keys until you have
dropped all foreign keys. You cannot drop columns that are indexed until all
indexes on the column have been dropped. ALTER TABLE cannot be used to drop
all of the columns of a table. Use DROP TABLE instead.

■ When a column is dropped from a table, all commands referencing that table need
to be recompiled. An error may result at recompilation time if a dropped column
was referenced. The application must re-prepare those commands, and rebuild
any parameters and result columns. When a column is added to a table, the
commands that contain a SELECT * statement are invalidated. Only these

ALTER TABLE

5-34 Oracle TimesTen In-Memory Database SQL Reference

commands must be re-prepared. All other commands continue to work as
expected.

■ When you drop a column, the column space is not freed.

■ When you add a UNIQUE constraint, there is overhead incurred (in terms of
additional space and additional time). This is because an index is created to
maintain the UNIQUE constraint. You cannot use the DROP INDEX statement to
drop an index used to maintain the UNIQUE constraint.

■ A UNIQUE constraint and its associated index cannot be dropped if it is being
used as a unique index on a replicated table.

■ Use ALTER TABLE...USE RANGE INDEX if your application performs range
queries over a table's primary key.

■ Use ALTER TABLE...USE HASH INDEX if your application performs exact match
lookups on a table's primary key.

■ An error is generated if a table has no primary key and either the USE HASH
INDEX clause or the USE RANGE INDEX clause is specified.

■ If ON DELETE CASCADE is specified on a foreign key constraint for a child table,
a user can delete rows from a parent table for which the user has the DELETE
privilege without requiring explicit DELETE privilege on the child table.

■ To change the ON DELETE CASCADE triggered action, drop then redefine the
foreign key constraint.

■ ON DELETE CASCADE is supported on detail tables of a materialized view. If
you have a materialized view defined over a child table, a deletion from the parent
table causes cascaded deletes in the child table. This, in turn, triggers changes in
the materialized view.

■ The total number of rows reported by the DELETE statement does not include
rows deleted from child tables as a result of the ON DELETE CASCADE action.

■ For ON DELETE CASCADE, since different paths may lead from a parent table to
a child table, the following rule is enforced:

■ Either all paths from a parent table to a child table are "delete" paths or all paths
from a parent table to a child table are "do not delete" paths.

– Specify ON DELETE CASCADE on all child tables on the "delete" path.

– This rule does not apply to paths from one parent to different children or from
different parents to the same child.

■ For ON DELETE CASCADE, a second rule is also enforced:

■ If a table is reached by a "delete" path, then all its children are also reached by a
"delete" path.

■ For ON DELETE CASCADE with replication, the following restrictions apply:

– The foreign keys specified with ON DELETE CASCADE must match between
the Master and subscriber for replicated tables. Checking is done at runtime. If
there is an error, the receiver thread stops working.

– All tables in the delete cascade tree have to be replicated if any table in the tree
is replicated. This restriction is checked when the replication scheme is created
or when a foreign key with ON DELETE CASCADE is added to one of the
replication tables. If an error is found, the operation is aborted. You may be
required to drop the replication scheme first before trying to change the
foreign key constraint.

ALTER TABLE

SQL Statements 5-35

– You must stop the replication agent before adding or dropping a foreign key
on a replicated table.

■ The ALTER TABLE ADD/DROP CONSTRAINT statement has the following
restrictions:

– When a foreign key is dropped, TimesTen also drops the index associated with
the foreign key. Attempting to drop an index associated with a foreign key
using the regular DROP INDEX statement results in an error.

– Foreign keys cannot be added or dropped on tables in a cache group.

– Foreign keys cannot be added or dropped on tables that participate in
TimesTen replication. If the operation is attempted on a table that is either
being replicated or is a replicated table, TimesTen returns an error.

– Foreign keys cannot be added or dropped on views or temporary tables.

■ After you have defined an aging policy for the table, you cannot change the policy
from LRU to time-based or from time-based to LRU. You must first drop aging
and then alter the table to add a new aging policy.

■ The aging policy must be defined to change the aging state.

■ The following rules determine if a row is accessed or referenced for LRU aging:

– Any rows used to build the result set of a SELECT statement.

– Any rows used to build the result set of an INSERT SELECT statement.

– Any rows that are about to be updated or deleted.

■ Compiled commands are marked invalid and need recompilation when you either
drop LRU aging from or add LRU aging to tables that are referenced in the
commands.

■ Call the ttAgingScheduleNow procedure to schedule the aging process right
away regardless if the aging state is ON or OFF.

■ For the time-based aging policy, you cannot add or modify the aging column. This
is because you cannot add or modify a NOT NULL column.

■ Aging restrictions:

– You cannot drop the column that is used for time-based aging.

– Tables that are related by foreign keys must have the same aging policy.

– For LRU aging, if a child row is not a candidate for aging, neither this child
row nor its parent row are deleted. ON DELETE CASCADE settings are
ignored.

– For time-based aging, if a parent row is a candidate for aging, then all child
rows are deleted. ON DELETE CASCADE (whether specified or not) is
ignored.

Examples
Add returnrate column to parts table.

ALTER TABLE parts ADD COLUMN returnrate DOUBLE;

Add numsssign and prevdept columns to contractor table.

ALTER TABLE contractor
ADD (numassign INTEGER, prevdept CHAR(30));

ALTER TABLE

5-36 Oracle TimesTen In-Memory Database SQL Reference

Remove addr1 and addr2 columns from employee table.

ALTER TABLE employee DROP (addr1, addr2);

Drop the UNIQUE title column of the books table.

ALTER TABLE books DROP UNIQUE (title);

Add the x1 column to the t1 table with a default value of 5:

ALTER TABLE t1 ADD (x1 INT DEFAULT 5);

Change the default value of column x1 to 2:

ALTER TABLE t1 MODIFY (x1 DEFAULT 2);

Alter table primarykeytest to add the primary key constraint c1. Use the ttIsql
INDEXES command to show that the primary key constraint c1 is created and a range
index is used:

Command> CREATE TABLE primarykeytest (col1 TT_INTEGER NOT NULL);
Command> ALTER TABLE primarykeytest ADD CONSTRAINT c1
> PRIMARY KEY (col1);
Command> INDEXES primarykeytest;

Indexes on table SAMPLEUSER.PRIMARYKEYTEST:
 C1: unique range index on columns:
 COL1
 1 index found.

1 table found.

Alter table prikeyhash to add the primary key constraint c2 using a hash index. Use
the ttIsql INDEXES command to show that the primary key constraint c2 is created
and a hash index is used:

Command> CREATE TABLE prikeyhash (col1 NUMBER (3,2) NOT NULL);
Command> ALTER TABLE prikeyhash ADD CONSTRAINT c2
> PRIMARY KEY (col1) USE HASH INDEX PAGES = 20;
Command> INDEXES prikeyhash;

Indexes on table SAMPLEUSER.PRIKEYHASH:
 C2: unique hash index on columns:
 COL1
 1 index found.

1 table found.

Attempt to add a primary key constraint on a table already defined with a primary
key. You see an error:

Command> CREATE TABLE oneprikey (col1 VARCHAR2 (30) NOT NULL,
> col2 TT_BIGINT NOT NULL, col3 CHAR (15) NOT NULL,
> PRIMARY KEY (col1,col2));
Command> ALTER TABLE oneprikey ADD CONSTRAINT c2
> PRIMARY KEY (col1,col2);
 2235: Table can have only one primary key
The command failed.

Attempt to add a primary key constraint on a column that is not defined as NOT
NULL. You see an error:

Command> CREATE TABLE prikeynull (col1 CHAR (30));

ALTER TABLE

SQL Statements 5-37

Command> ALTER TABLE prikeynull ADD CONSTRAINT c3
> PRIMARY KEY (col1);
 2236: Nullable column can not be part of a primary key
The command failed.

This example illustrates the use of range and hash indexes. It creates the pkey table
with col1 as the primary key. A range index is created by default. The table is then
altered to change the index on col1 to a hash index. The table is altered again to
change the index back to a range index.

Command> CREATE TABLE pkey (col1 TT_INTEGER PRIMARY KEY, col2 VARCHAR2 (20));
Command> INDEXES pkey;
Indexes on table SAMPLEUSER.PKEY:
PKEY: unique range index on columns:
COL1

1 index found.
1 table found.

Alter the pkey table to use a hash index:

Command> ALTER TABLE pkey USE HASH INDEX PAGES = CURRENT;
Command> INDEXES pkey;
Indexes on table SAMPLEUSER.PKEY:
PKEY: unique hash index on columns:
COL1

1 index found.
1 table found.

Alter the pkey table to use a range index:

Command> ALTER TABLE pkey USE RANGE INDEX;
Command> INDEXES pkey;
Indexes on table SAMPLEUSER.PKEY:
PKEY: unique range index on columns:
COL1

1 index found.
1 table found.

This example generates an error when attempting to alter a table to define either a
range or hash index on a column without a primary key.

Command> CREATE TABLE illegalindex (Ccl1 CHAR (20));
Command> ALTER TABLE illegalindex USE RANGE INDEX;
 2810: The table has no primary key so cannot change its index type
The command failed.
Command> ALTER TABLE illegalindex USE HASH INDEX PAGES = CURRENT;
 2810: The table has no primary key so cannot change its index type
The command failed.

These examples show how time resolution works with aging. In this example, lifetime
is 3 days.

■ If (SYSDATE - ColumnValue) <= 3, do not age out the row.

■ If (SYSDATE - ColumnValue) > 3, then the row is a candidate for aging.

■ If (SYSDATE - ColumnValue) = 3 days, 22 hours, then row is not aged out because
lifetime was specified in days. The row would be aged out if lifetime had been
specified as 72 hours.

This example alters a table by adding LRU aging. The table has no previous aging
policy. The aging state is ON by default.

ALTER TABLE

5-38 Oracle TimesTen In-Memory Database SQL Reference

ALTER TABLE agingdemo3 ADD AGING LRU;
Command> DESCRIBE agingdemo3;
Table USER.AGINGDEMO3:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE

Aging lru on
1 table found.
(primary key columns are indicated with *)

This example alters a table by adding time-based aging. The table has no previous
aging policy. The agingcolumn column is used for aging. LIFETIME is 2 days.
CYCLE is 30 minutes.

ALTER TABLE agingdemo4
ADD AGING USE agingcolumn LIFETIME 2 DAYS CYCLE 30 MINUTES;

Command> DESCRIBE agingdemo4;
Table USER.AGINGDEMO4:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 2 days cycle 30 minutes on

This example illustrates that after you create an aging policy, you cannot change it.
You must drop aging and redefine.

CREATE TABLE agingdemo5
(agingid NUMBER NOT NULL PRIMARY KEY
,name VARCHAR2 (20)
,agingcolumn TIMESTAMP NOT NULL
)
AGING USE agingcolumn LIFETIME 3 DAYS OFF;

ALTER TABLE agingdemo5
ADD AGING LRU;

 2980: Cannot add aging policy to a table with an existing aging policy. Have to
drop the old aging first
The command failed.

Drop aging on the table and redefine with LRU aging.

ALTER TABLE agingdemo5
DROP AGING;

ALTER TABLE agingdemo5
ADD AGING LRU;

Command> DESCRIBE agingdemo5;
Table USER.AGINGDEMO5:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging lru on
1 table found.
(primary key columns are indicated with *)

This example alters a table by setting the aging state to OFF. The table has been
defined with a time-based aging policy. If you set the aging state to OFF, aging is not
done automatically. This is useful if you wish to use an external scheduler to control
the aging process. Set aging state to OFF and then call the ttAgingScheduleNow
procedure to start the aging process.

ALTER TABLE

SQL Statements 5-39

Command> DESCRIBE agingdemo4;
Table USER.AGINGDEMO4:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 2 days cycle 30 minutes on

ALTER TABLE AgingDemo4
SET AGING OFF;

Note that when you describe agingdemo4, the aging policy is defined and the aging
state is set to OFF.

Command> DESCRIBE agingdemo4;
Table USER.AGINGDEMO4:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 2 days cycle 30 minutes off
1 table found.
(primary key columns are indicated with *)

Call ttAgingScheduleNow to invoke aging with an external scheduler:

Command> CALL ttAgingScheduleNow ('agingdemo4');

Attempt to alter a table adding the aging column and then use that column for
time-based aging. An error is generated.

Command> DESCRIBE x;
Table USER1.X:
Columns:
*ID TT_INTEGER NOT NULL

1 table found.
(primary key columns are indicated with *)
Command> ALTER TABLE x ADD COLUMN t TIMESTAMP;
Command> ALTER TABLE x ADD AGING USE t LIFETIME 2 DAYS;
 2993: Aging column cannot be nullable
The command failed.

Attempt to alter the LIFETIME clause for a table defined with time-based aging. The
aging column is defined with data type TT_DATE. An error is generated because the
LIFETIME unit is not expressed in DAYS.

Command> CREATE TABLE aging1 (col1 TT_DATE NOT NULL) AGING USE
col1 LIFETIME 2 DAYS;

Command> ALTER TABLE aging1 SET AGING LIFETIME 2 HOURS;
 2977: Only DAY lifetime unit is allowed with a TT_DATE column
The command failed.

See also
CREATE TABLE
DROP TABLE
"Implementing aging in your tables" in Oracle TimesTen In-Memory Database Operations
Guide

ALTER USER

5-40 Oracle TimesTen In-Memory Database SQL Reference

ALTER USER

The ALTER USER statement allows a user to change the user’s own password. A user
with the ADMIN privilege can change another user’s password.

This statement also allows a user to change another user from internal to external or
from external to internal.

Required privilege
No privilege is required to change the user’s own password.

ADMIN privilege is required to change another user’s password.

ADMIN privilege is required to change users from internal to external and from
external to internal.

SQL syntax
ALTER USER user IDENTIFIED BY {password | "password"}
ALTER USER user IDENTIFIED EXTERNALLY

Parameters
The ALTER USER statement has the parameters:

Description
■ Database users can be internal or external.

– Internal users are defined for a TimesTen database.

– External users are defined by an external authority, such as the operating
system. External users cannot be assigned a TimesTen password.

■ If you are an internal user connected as user, execute this statement to change
your TimesTen password.

■ Passwords are case-sensitive.

■ You cannot alter a user across a client/server connection. You must use a direct
connection when altering a user.

Parameter Description

user Name of the user whose password is being changed.

IDENTIFIED BY Identification clause.

password |"password" Specifies the password that identifies the internal user to the
TimesTen database.

EXTERNALLY Identifies the operating system user to the TimesTen database. To
perform database operations as an external user, the process needs
a TimesTen external user name that matches the user name
authenticated by the operating system or network. A password is
not required by TimesTen because the user has been authenticated
by the operating system at login time.

ALTER USER

SQL Statements 5-41

Examples
To change the password for internal user terry to "12345" from its current setting,
use:

ALTER USER terry IDENTIFIED BY "12345";
User altered.

To change user terry to an external user:

ALTER USER terry IDENTIFIED EXTERNALLY;
User altered.

To change user terry back to an internal user, provide a password:

ALTER USER terry IDENTIFIED BY "secret";
User altered.

See also
CREATE USER
DROP USER
GRANT
REVOKE

COMMIT

5-42 Oracle TimesTen In-Memory Database SQL Reference

COMMIT

The COMMIT statement ends the current transaction and makes permanent all
changes performed in the transaction. A transaction is a sequence of SQL statements
treated as a single unit.

Required privilege
None

SQL syntax
COMMIT [WORK]

Parameters
The COMMIT statement allows the optional keyword:

Description
■ Until you commit a transaction:

– You can see any changes you have made during the transaction but other
users cannot see the changes. After you commit the transaction, the changes
are visible to other users' statements that execute after the commit.

– You can roll back (undo) changes made during the transaction with the
ROLLBACK statement.

■ This statement releases transaction locks.

■ For passthrough, the Oracle transaction will also be committed.

■ A commit closes all open cursors.

Examples
Insert row into regions table of HR schema and commit transaction. First set
autocommit to 0:

Command> SET AUTOCOMMIT 0;
Command> INSERT INTO regions VALUES (5,'Australia');
1 row inserted.
Command> COMMIT;
Command> SELECT * FROM regions;
< 1, Europe >
< 2, Americas >
< 3, Asia >
< 4, Middle East and Africa >
< 5, Australia >
5 rows found.

See also
ROLLBACK

Parameter Description

[WORK] Optional clause supported for compliance with the SQL standard.
COMMIT and COMMIT WORK are equivalent.

CREATE ACTIVE STANDBY PAIR

SQL Statements 5-43

CREATE ACTIVE STANDBY PAIR

This statement creates an active standby pair. It includes an active master data store, a
standby master data store, and may also include one or more read-only subscribers.
The active master data store replicates updates to the standby master data store, which
propagates the updates to the subscribers.

Required privilege
ADMIN

SQL syntax
CREATE ACTIVE STANDBY PAIR
FullStoreName, FullStoreName [ReturnServiceAttribute]
[SUBSCRIBER FullStoreName [,...]]
[STORE FullStoreName [StoreAttribute [...]]]
[NetworkOperation [...]]
[{ INCLUDE | EXCLUDE }{TABLE [[Owner.]TableName [,...]]|

CACHE GROUP [[Owner.]CacheGroupName [,...]]|
SEQUENCE [[Owner.]SequenceName [,...]]} [,...]]

The syntax for ReturnServiceAttribute is

{ RETURN RECEIPT [BY REQUEST] |
RETURN TWOSAFE [BY REQUEST] |
NO RETURN }

Syntax for StoreAttribute is:

[DISABLE RETURN {SUBSCRIBER | ALL} NumFailures]
[RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED]
[DURABLE COMMIT {ON | OFF}]
[RESUME RETURN MilliSeconds]
[LOCAL COMMIT ACTION {NO ACTION | COMMIT}]
[RETURN WAIT TIME Seconds]
[COMPRESS TRAFFIC {ON | OFF}
[PORT PortNumber]
[TIMEOUT Seconds]
[FAILTHRESHOLD Value]

Syntax for NetworkOperation:

ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }

PRIORITY Priority } [...]

Parameters
CREATE ACTIVE STANDBY PAIR has the parameters:

CREATE ACTIVE STANDBY PAIR

5-44 Oracle TimesTen In-Memory Database SQL Reference

Parameter Description

FullStoreName The data store, specified as one of the following:

■ SELF

■ The prefix of the data store file name

For example, if the data store path is
directory/subdirectory/data.ds0, then data
is the data store name that should be used.

This is the data store file name specified in the
DataStore attribute of the DSN description with
optional host ID in the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host name
assigned to one or more IP addresses, as described in
"Configuring host IP addresses" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication
Guide. Host names containing special characters must
be surrounded by double quotes. For example:
"MyHost-500".

RETURN RECEIPT [BY REQUEST] Enables the return receipt service, so that applications
that commit a transaction to an active master data store
are blocked until the transaction is received by the
standby master data store.

RETURN RECEIPT applies the service to all
transactions. If you specify RETURN REQUEST BY
REQUEST, you can use the ttRepSyncSet procedure
to enable the return receipt service for selected
transactions. For details on the use of the return
services, see "Using a return service" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication
Guide.

RETURN TWOSAFE [BY REQUEST] Enables the return twosafe service, so that applications
that commit a transaction to an active master data store
are blocked until the transaction is committed on the
standby master data store.

RETURN TWOSAFE applies the service to all
transactions. If you specify RETURN TWOSAFE BY
REQUEST, you can use the ttRepSyncSet procedure
to enable the return receipt service for selected
transactions.

For details on the use of the return services, see "Using
a return service" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

DISABLE RETURN {SUBSCRIBER
| ALL} NumFailures

Set the return service failure policy so that return
service blocking is disabled after the number of
timeouts specified by NumFailures.

Specifying SUBSCRIBER is the same as specifying ALL.
Both settings refer to the standby master data store.

 This failure policy can be specified for either the
RETURN RECEIPT or RETURN TWOSAFE service.

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for
details.

RESUME RETURN Milliseconds If DISABLE RETURN has disabled return service
blocking, this attribute sets the policy for when to
re-enable the return service.

CREATE ACTIVE STANDBY PAIR

SQL Statements 5-45

NO RETURN Specifies that no return service is to be used. This is the
default.

For details on the use of the return services, see "Using
a return service" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

RETURN WAIT TIME Seconds Specifies the number of seconds to wait for return
service acknowledgement. A value of 0 means that
there is no waiting. The default value is 10 seconds.

The application can override this timeout setting by
using the returnWait parameter in the
ttRepSyncSet built-in procedure.

SUBSCRIBER FullStoreName
[,...]]

A data store that receives updates from a master data
store. FullStoreName is the data store file name
specified in the DataStore attribute of the DSN
description.

STORE FullStoreName
[StoreAttribute [...]]

Defines the attributes for the specified data store. Data
store attributes include PORT, TIMEOUT and
FAILTHRESHOLD. FullStoreName is the data store
file name specified in the DataStore attribute of the
DSN description.

{INCLUDE | EXCLUDE}

{TABLE
[[Owner.]TableName[,...]]|

CACHE GROUP

[[Owner.]CacheGroupName

[,...]]|

SEQUENCE

[[Owner.]SequenceName

[,...]]}

[,...]

An active standby pair replicates an entire data store by
default.

INCLUDE includes only the listed tables, sequences or
cache groups to replication. Use one INCLUDE clause
for each object type (table, sequence or cache group).

EXCLUDE removes tables, sequences or cache groups
from the replication scheme. Use one EXCLUDE clause
for each object type (table, sequence or cache group).

DURABLE COMMIT {ON | OFF} Set to override the DurableCommits setting on a data
store and enable durable commit when return service
blocking has been disabled by DISABLE RETURN.

FAILTHRESHOLD Value The number of log files that can accumulate for a
subscriber data store. If this value is exceeded, the
subscriber is set to the Failed state.The value 0 means
"No Limit." This is the default.

See "Setting the log failure threshold" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication
Guide for more information.

Parameter Description

CREATE ACTIVE STANDBY PAIR

5-46 Oracle TimesTen In-Memory Database SQL Reference

LOCAL COMMIT ACTION

{NO ACTION | COMMIT}

Specifies the default action to be taken for a return
twosafe transaction in the event of a timeout.

Note: This attribute is valid only when the RETURN
TWOSAFE or RETURN TWOSAFE BY REQUEST
attribute is set in the SUBSCRIBER clause.

NO ACTION: On timeout, the commit function returns
to the application, leaving the transaction in the same
state it was in when it entered the commit call, with the
exception that the application is not able to update any
replicated tables. The application can reissue the
commit or rollback the call. This is the default.

COMMIT: On timeout, the commit function attempts to
perform a COMMIT to end the transaction locally. No
more operations are possible on the same transaction.

This setting can be overridden for specific transactions
by calling the localAction parameter in the
ttRepSyncSet procedure.

MASTER FullStoreName The data store on which applications update the
specified ELEMENT. The MASTER data store sends
updates to its SUBSCRIBER data stores. The
FullStoreName must be the data store specified in
the DataStore attribute of the DSN description.

PORT PortNumber The TCP/IP port number on which the replication
agent for the data store listens for connections. If not
specified, the replication agent automatically allocates a
port number.

In an active standby pair, the standby master data store
listens for updates from the active master data store.
Read-only subscribers listen for updates from the
standby master data store.

ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Denotes the NetworkOperation clause. If specified,
allows you to control the network interface that a
master store uses for every outbound connection to
each of its subscriber stores. In the context of the ROUTE
clause, each master data store is a subscriber of the
other master data store and each read-only subscriber is
a subscriber of both master data stores.

Can be specified more than once.

For FullStoreName, ON "host" must be specified.

MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost

MasterHost and SubscriberHost are the IP
addresses for the network interface on the master and
subscriber stores. Specify in dot notation or canonical
format or in colon notation for IPV6.

Clause can be specified more than once.

PRIORITY Priority Variable expressed as an integer from 1 to 99. Denotes
the priority of the IP address. Lower integral values
have higher priority. An error is returned if multiple
addresses with the same priority are specified. Controls
the order in which multiple IP addresses are used to
establish peer connections.

Required syntax of NetworkOperation clause.
Follows MASTERIP MasterHost | SUBSCRIBERIP
SubscriberHost clause.

Parameter Description

CREATE ACTIVE STANDBY PAIR

SQL Statements 5-47

Description
■ CREATE ACTIVE STANDBY PAIR is immediately followed by the names of the

two master data stores. The master data stores are later designated as ACTIVE and
STANDBY using the ttRepStateSet built-in procedure. See "Setting up an
active standby pair with no cache groups" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

■ The SUBSCRIBER clause lists one or more read-only subscriber data stores. You
can designate up to 127 subscriber data stores.

■ Replication between the active master data store and the standby master data store
can be RETURN TWOSAFE, RETURN RECEIPT, or asynchronous. RETURN
TWOSAFE ensures no transaction loss.

■ Use the INCLUDE and EXCLUDE clauses to exclude the listed tables, sequences
and cache groups from replication, or to include only the listed tables, sequences
and cache groups, excluding all others.

■ If the active standby pair has the RETURN TWOSAFE attribute and replicates a
cache group, a transaction may fail if:

– The transaction that is being replicated contains an ALTER TABLE statement
or an ALTER CACHE GROUP statement

– The transaction contains an INSERT, UPDATE or DELETE statement on a
replicated table, replicated cache group or an asynchronous writethrough
cache group

■ Using an active standby pair to replicate read-only cache groups and
asynchronous writethrough (AWT) cache groups is supported.

■ You cannot use an active standby pair to replicate synchronous writethrough
(SWT) cache groups. If you are using an active standby pair to replicated a data
store with SWT cache groups, you must either drop or exclude the SWT cache
groups.

Examples
This example creates an active standby pair whose master data stores are rep1 and
rep2. There is one subscriber, rep3. The type of replication is RETURN RECEIPT. The
statement also sets PORT and TIMEOUT attributes for the master data stores.

CREATE ACTIVE STANDBY PAIR rep1, rep2 RETURN RECEIPT
SUBSCRIBER rep3
STORE rep1 PORT 21000 TIMEOUT 30
STORE rep2 PORT 22000 TIMEOUT 30;

Specify NetworkOperation clause to control network interface:

CREATE ACTIVE STANDBY PAIR rep1,rep2
ROUTE MASTER rep1 ON "machine1" SUBSCRIBER rep2 ON "machine2"

TIMEOUT Seconds Set the maximum number of seconds a data store waits
before re-sending a message to an unresponsive data
store.

In an active standby pair, the active master data store
sends messages to the standby master data store. The
standby master data store sends messages to the
read-only subscribers.

Parameter Description

CREATE ACTIVE STANDBY PAIR

5-48 Oracle TimesTen In-Memory Database SQL Reference

MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2" PRIORITY 1;

See also
ALTER ACTIVE STANDBY PAIR
DROP ACTIVE STANDBY PAIR

CREATE CACHE GROUP

SQL Statements 5-49

CREATE CACHE GROUP

The CREATE CACHE GROUP statement:

■ Creates the table defined by the cache group

■ Inserts all new information associated with the cache group in the appropriate
system tables.

A cache group is a set of tables related through foreign keys that cache data from tables
in an Oracle database. There is one root table that does not reference any of the other
tables. All other cache tables in the cache group reference exactly one other table in the
cache group. In other words, the foreign key relationships form a tree.

A cache table is a set of rows satisfying the conditions:

■ The rows constitute a subset of the rows of a vertical partition of an Oracle table.

■ The rows are stored in a TimesTen table with the same name as the Oracle table.

If a data store has more than one cache group, the cache groups must correspond to
different Oracle (and TimesTen) tables.

Cache group instance refers to a row in the root table and all the child table rows related
directly or indirectly to the root table rows.

User managed and system managed cache groups
A cache group can be either system managed or user managed.

A system managed cache group is fully managed by TimesTen and has fixed properties.
System managed cache group types include:

■ READONLY - Read-only cache groups are updated in Oracle, and the updates are
propagated from Oracle to the cache.

■ ASYNCHRONOUS WRITETHROUGH (AWT) - AWT cache groups are updated
in the cache and the updates are propagated to Oracle. Transactions continue
executing on the cache without waiting for a commit on Oracle.

■ SYNCHRONOUS WRITETHROUGH (SWT) - SWT cache groups are updated in
the cache and the updates are propagated to Oracle. Transactions are committed
on the cache after notification that a commit has occurred on Oracle.

Because TimesTen manages system managed cache groups, including loading and
unloading the cache group, certain statements and clauses cannot be used in the
definition of these cache groups, including:

■ WHERE clauses in AWT and SWT cache group definitions

■ READONLY, PROPAGATE and NOT PROPAGATE in cache table definitions

■ AUTOREFRESH in AWT and SWT cache group definitions

The FLUSH CACHE GROUP and REFRESH CACHE GROUP operations are not
allowed for AWT and SWT cache groups.

You must stop the replication agent before creating an AWT cache group.

A user managed cache group must be managed by the application or user. PROPAGATE
in a user managed cache group is synchronous. The table-level READONLY keyword
can only be used for user managed cache groups.

In addition, both TimesTen and Oracle must be able to parse all WHERE clauses.

CREATE CACHE GROUP

5-50 Oracle TimesTen In-Memory Database SQL Reference

Explicitly loaded cache groups and dynamic cache groups
Cache groups can be explicitly loaded or dynamic.

In cache groups that are explicitly loaded, new cache instances are loaded manually
into the TimesTen cache tables from the Oracle tables using a LOAD CACHE GROUP
or REFRESH CACHE GROUP statement or automatically using an autorefresh
operation.

In a dynamic cache group, new cache instances can be loaded manually into the
TimesTen cache tables by using a LOAD CACHE GROUP or on demand using a
dynamic load operation. A manual refresh or automatic refresh operation on a
dynamic cache group can result in the updating or deleting of existing cache instances,
but not in the inserting or loading of new cache instances.

Any cache group type (READONLY, ASYNCHRONOUS WRITETHROUGH,
SYNCHRONOUS WRITETHROUGH, USERMANAGED) can be defined as an
explicitly loaded cache group.

Any cache group type can be defined as a dynamic cache group except a user managed
cache group that has both the AUTOREFRESH cache group attribute and the
PROPAGATE cache table attribute.

Data in a dynamic cache group is aged out because LRU aging is defined by default.
Use the ttAgingLRUConfig built-in procedure to override the space usage
thresholds for LRU aging. You can also define time-based aging on a dynamic cache
group to override LRU aging.

For more information on explicitly loaded and dynamic cache groups, see Oracle
In-Memory Database Cache User's Guide. For more information about the dynamic load
operation, see "Dynamically loading a cache group" in Oracle In-Memory Database Cache
User's Guide.

Local and global cache groups
You can create either local or global cache groups.

In a local cache group, data in the cache tables are not shared across TimesTen
databases even if the databases are members of the same cache grid. Therefore, the
databases can have overlapping data or the same data. Any cache group type can be
defined as a local cache group. A local cache group can be either dynamic or explicitly
loaded.

In a global cache group, data in the cache tables are shared among TimesTen databases
within a cache grid. Updates to the same data by different grid members are
coordinated by the grid. Only a dynamic AWT cache group can be defined as a global
cache group.

For more information on local and global cache groups, see Oracle In-Memory Database
Cache User's Guide. In particular, see "Example of data sharing among the grid
members" in Oracle In-Memory Database Cache User's Guide.

Required privilege
CREATE CACHE GROUP or CREATE ANY CACHE GROUP and

CREATE TABLE (if all tables in the cache group are owned by the current user) or
CREATE ANY TABLE (if at least one of the tables in the cache group is not owned by
the current user)

SQL syntax
There are CREATE CACHE GROUP statements for each type of cache group:

CREATE CACHE GROUP

SQL Statements 5-51

■ CREATE READONLY CACHE GROUP

■ CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP

■ CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP

■ CREATE USERMANAGED CACHE GROUP

There is one CREATE CACHE GROUP statement to create a global cache group:

■ CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE
GROUP

CREATE READONLY CACHE GROUP
For READONLY cache groups, the syntax is:

CREATE [DYNAMIC] READONLY CACHE GROUP [Owner.]GroupName
[AUTOREFRESH
[MODE {INCREMENTAL | FULL}]
[INTERVAL IntervalValue {MINUTE[S] | SECOND[S] | MILLESECOND[S] }]
[STATE {ON|OFF|PAUSED}]
]
FROM
{[Owner.]TableName (
{ColumnDefinition[,…]}
[,PRIMARY KEY(ColumnName[,…])]
[,FOREIGN KEY(ColumnName [,…])

REFERENCES RefTableName (ColumnName [,…])
[ON DELETE CASCADE]

[UNIQUE HASH ON (HashColumnName[,…]) PAGES=PrimaryPages]
[WHERE ExternalSearchCondition]
[AGING USE ColumnName

LIFETIME Num1 {MINUTE[S] |HOUR[S] | DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

[ON|OFF]
]
} [,...];

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP
For ASYNCHRONOUS WRITETHROUGH cache groups, the syntax is:

CREATE [DYNAMIC] [ASYNCHRONOUS] WRITETHROUGH CACHE GROUP [Owner.]GroupName
FROM
{[Owner.]TableName (
{ColumnDefinition[,…]}
[,PRIMARY KEY(ColumnName[,…])]
[FOREIGN KEY(ColumnName [,…])

REFERENCES RefTableName (ColumnName [,…])]
[ON DELETE CASCADE]

UNIQUE HASH ON (HashColumnName[,…]) PAGES=PrimaryPages]
[AGING {LRU|

USE ColumnName
LIFETIME Num1 {MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

}[ON|OFF]
]
} [,...];

CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP
For SYNCHRONOUS WRITETHROUGH cache groups, the syntax is:

CREATE CACHE GROUP

5-52 Oracle TimesTen In-Memory Database SQL Reference

CREATE [DYNAMIC] SYNCHRONOUS WRITETHROUGH
CACHE GROUP [Owner.]GroupName
FROM
{[Owner.]TableName (
{ColumnDefinition[,…]}
[,PRIMARY KEY(ColumnName[,…])]
[FOREIGN KEY(ColumnName [,…])

REFERENCES RefTableName (ColumnName [,…])}]
[ON DELETE CASCADE]

[UNIQUE HASH ON (HashColumnName[,…]) PAGES=PrimaryPages]
[AGING {LRU|

USE ColumnName
LIFETIME Num1 {MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

}[ON|OFF]
]
} [,...];

CREATE USERMANAGED CACHE GROUP
For user managed cache groups, the syntax is:

CREATE [DYNAMIC][USERMANAGED] CACHE GROUP [Owner.]GroupName
[AUTOREFRESH
[MODE {INCREMENTAL | FULL}]
[INTERVAL IntervalValue {MINUTE[S] | SECOND[S] | MILLESECOND[S] }]
[STATE {ON|OFF|PAUSED}]

]
FROM
{[Owner.]TableName (
{ColumnDefinition[,…]}
[,PRIMARY KEY(ColumnName[,…])]
[FOREIGN KEY(ColumnName[,…])

REFERENCES RefTableName (ColumnName [,…])]
[ON DELETE CASCADE]

[, {READONLY | PROPAGATE | NOT PROPAGATE}]
[UNIQUE HASH ON (HashColumnName[,…]) PAGES=PrimaryPages]
[WHERE ExternalSearchCondition]
[AGING {LRU|

USE ColumnName
LIFETIME Num1 {MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

}[ON|OFF]
]
} [,...];

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE
GROUP
To create a global dynamic cache group to cache data within a cache grid:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE GROUP [Owner.]GroupName
FROM
{[Owner.]TableName (
{ColumnDefinition[,…]}
[,PRIMARY KEY(ColumnName[,…])]
[FOREIGN KEY(ColumnName [,…])

REFERENCES RefTableName (ColumnName [,…])]
[ON DELETE CASCADE]

UNIQUE HASH ON (HashColumnName[,…]) PAGES=PrimaryPages]
[AGING {LRU|

USE ColumnName

CREATE CACHE GROUP

SQL Statements 5-53

LIFETIME Num1 {MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

}[ON|OFF]
]
} [,...];

Parameters
The parameters for the cache group definition before the FROM keyword are:

Everything after the FROM keyword comprises the definitions of the Oracle tables
cached in the cache group. The syntax for each table definition is similar to that of a
CREATE TABLE statement. However, primary key constraints are required for the
cache group table.

Table definitions have the parameters:

Parameter Description

[Owner.]GroupName Owner and name assigned to the new cache group.

[DYNAMIC] If specified, a dynamic cache group is created.

AUTOREFRESH The AUTOREFRESH parameter automatically propagates
changes from the Oracle database to the cache group. For details,
see "AUTOREFRESH in cache groups" on page 5-57.

MODE [INCREMENTAL |
FULL]

Determines which rows in the cache are updated during an
autorefresh. If the INCREMENTAL clause is specified, TimesTen
refreshes only rows that have been changed on Oracle since the
last propagation. If the FULL clause is specified, TimesTen
updates all rows in the cache with each autorefresh. The default
autorefresh mode is INCREMENTAL.

INTERVAL
IntervalValue

Indicates the interval at which autorefresh should occur in units
of minutes, seconds or milliseconds. IntervalValue is an
integer value that specifies how often autorefresh should be
scheduled, in MINUTES, SECONDS or MILLISECONDS. The
default IntervalValue value is 5 minutes. If the specified
interval is not long enough for an autorefresh to complete, a
runtime warning is generated and the next autorefresh waits
until the current one finishes. An informational message is
generated in the support log if the wait queue reaches 10.

STATE [ON | OFF |
PAUSED]

Specifies whether autorefresh should be ON or OFF or PAUSED
when the cache group is created. You can alter this setting later
by using the ALTER CACHE GROUP statement. By default, the
autorefresh state is PAUSED.

FROM Designates one or more table definitions for the cache group.

Parameter Description

[Owner.]TableName Owner and name to be assigned to the new table. If you do
not specify the owner name, your login becomes the owner
name for the new table.

ColumnDefinition Name of an individual column in a table, its data type and
whether or not it is nullable. Each table must have at least
one column. See "Column Definition" on page 5-104.

CREATE CACHE GROUP

5-54 Oracle TimesTen In-Memory Database SQL Reference

PRIMARY KEY
(ColumnName[,…])

Specifies that the table has a primary key. Primary key
constraints are required for a cache group. ColumnName is
the name of the column that forms the primary key for the
table to be created. Up to 16 columns can be specified for
the primary key. Cannot be specified with UNIQUE in one
specification.

FOREIGN KEY
(ColumnName[,…])

Specifies that the table has a foreign key. ColumnName is
the name of the column that forms the foreign key for the
table to be created. See "FOREIGN KEY" on page 5-101.

REFERENCES RefTableName
(ColumnName[,…])

Specifies the table which the foreign key is associated with.
RefTableName is the name of the referenced table and
ColumnName is the name of the column referenced in the
table.

[ON DELETE CASCADE] Enables the ON DELETE CASCADE referential action. If
specified, when rows containing referenced key values are
deleted from a parent table, rows in child tables with
dependent foreign key values are also deleted.

READONLY Specifies that changes cannot be made on the cached table.

PROPAGATE|NOT PROPAGATE Specifies whether changes to the cached table are
automatically propagate to the corresponding Oracle table
at commit time.

UNIQUE HASH ON
(HashColumnName)

Specifies that a hash index is created on this table.
HashColumnName identifies the column that is to
participate in the hash key of this table. The columns
specified in the hash index must be identical to the columns
in the primary key.

PAGES=PrimaryPages Specifies the expected number of pages in the table. The
PrimaryPages number determines the number of hash
buckets created for the hash index. The minimum is 1. If
your estimate is too small, performance is degraded. See
"CREATE TABLE" on page 5-99 for more information.

WHERE
ExternalSearchCondition

The WHERE clause evaluated by Oracle for the cache
group table. This WHERE clause is added to every LOAD
and REFRESH operation on the cache group. It may not
directly reference other tables. It is parsed by both
TimesTen and Oracle. See "Using a WHERE clause" in
Oracle In-Memory Database Cache User's Guide.

Parameter Description

CREATE CACHE GROUP

SQL Statements 5-55

AGING LRU [ON | OFF] If specified, defines the LRU aging policy on the root table.
The LRU aging policy applies to all tables in the cache
group. The LRU aging policy defines the type of aging
(least recently used (LRU)), the aging state (ON or OFF)
and the LRU aging attributes.

Set the aging state to either ON or OFF. ON indicates that
the aging state is enabled and aging is done automatically.
OFF indicates that the aging state is disabled and aging is
not done automatically. In both cases, the aging policy is
defined. The default is ON.

In dynamic cache groups, LRU aging is set ON by default.
You can specify time-based aging instead.

LRU attributes are defined by calling the
ttAgingLRUConfig procedure. LRU attributes are not
defined at the SQL level.

LRU aging is not supported for cache groups with
autorefresh.

For more information about LRU aging, see "Implementing
aging on a cache group" in Oracle In-Memory Database Cache
User's Guide.

AGING USE
ColumnName...[ON|OFF]

If specified, defines the time-based aging policy on the root
table. The time-based aging policy applies to all tables in
the cache group. The time-based aging policy defines the
type of aging (time-based), the aging state (ON or OFF) and
the time-based aging attributes.

Set the aging state to either ON or OFF. ON indicates that
the aging state is enabled and aging is done automatically.
OFF indicates that the aging state is disabled and aging is
not done automatically. In both cases, the aging policy is
defined. The default is ON.

Time-based aging attributes are defined at the SQL level
and are specified by the LIFETIME and CYCLE clauses.

Specify ColumnName as the name of the column used for
time-based aging. Define the column as NOT NULL and of
data type TIMESTAMP or DATE. The value of this column
is subtracted from SYSDATE, truncated using the specified
unit (minute, hour, day) and then compared to the
LIFETIME value. If the result is greater than the LIFETIME
value, then the row is a candidate for aging.

The values of the column used for aging are updated by
your applications. If the value of this column is unknown
for some rows, and you do not want the rows to be aged,
define the column with a large default value (the column
cannot be NULL).

For more information about time-based aging, see
"Implementing aging on a cache group" in Oracle
In-Memory Database Cache User's Guide.

Parameter Description

CREATE CACHE GROUP

5-56 Oracle TimesTen In-Memory Database SQL Reference

Description
■ Two cache groups cannot have the same owner name and group name. If you do

not specify the owner name, your login becomes the owner name for the new
cache group.

■ Dynamic parameters are not allowed in the WHERE clause.

■ Oracle temporary tables cannot be cached.

■ Each table must correspond to a table in the Oracle database.

■ You cannot use lowercase delimited identifiers to name your cache tables. Table
names in TimesTen are case-insensitive and are stored as uppercase. The name of
the cache table must be the same as the Oracle table name. Uppercase table names
on TimesTen will not match mixed case table names on Oracle. As a workaround,
create a synonym for your table in Oracle and use that synonym as the table name
for the cache group. This workaround is not available for read-only cache groups
or cache groups with the AUTOREFRESH attribute.

■ Each column in the cache table must match each column in the Oracle table, both
in name and in data type. See "Mappings between Oracle and TimesTen data
types" in Oracle In-Memory Database Cache User's Guide. In addition, each column
name must be fully qualified with an owner and table name when referenced in a
WHERE clause.

LIFETIME Num1
{MINUTE[S]|HOUR[S]DAY[S]}

LIFETIME is a time-based aging attribute and is a required
clause.

Specify the LIFETIME clause after the AGING USE
ColumnName clause.

The LIFETIME clause specifies the minimum amount of
time data is kept in cache.

Specify Num1 as a positive integer constant to indicate the
unit of time expressed in minutes, hours or days that rows
should be kept in cache. Rows that exceed the LIFETIME
value are aged out (deleted from the table).

The concept of time resolution is supported. If DAYS is
specified as the time resolution, then all rows whose
timestamp belongs to the same day are aged out at the
same time. If HOURS is specified as the time resolution,
then all rows with timestamp values within that hour are
aged at the same time. A LIFETIME of 3 days is different
than a LIFETIME of 72 hours (3*24) or a LIFETIME of 432
minutes (3*24*60).

[CYCLE Num2 {MINUTE[S]
|HOUR[S]|DAY[S]}]

CYCLE is a time-based aging attribute and is optional.
Specify the CYCLE clause after the LIFETIME clause.

The CYCLE clause indicates how often the system should
examine rows to see if data exceeds the specified LIFETIME
value and should be aged out (deleted).

Specify Num2 as a positive integer constant.

If you do not specify the CYCLE clause, then the default
value is 5 minutes. If you specify 0 for Num2, then aging is
continuous and the aging thread never sleeps.

If the aging state is OFF, then aging is not done
automatically and the CYCLE clause is ignored.

Parameter Description

CREATE CACHE GROUP

SQL Statements 5-57

■ The WHERE clause can only directly refer to the cache group table. Tables that are
not in the cache group can only be referenced with a sub-select.

■ Generally, you do not have to fully qualify the column names in the WHERE
clause of the CREATE CACHE GROUP, LOAD, UNLOAD, REFRESH or FLUSH
statements. However, since TimesTen automatically generates queries that join
multiple tables in the same cache group, a column needs to be fully qualified if
there is more than one table in the cache group that contains columns with the
same name.

■ By default, a range index is created to enforce the primary key for a cache group
table. Use the UNIQUE HASH clause to specify a hash index for the primary key.

– If your application performs range queries over a cache group table's primary
key, then choose a range index for that cache group table by omitting the
UNIQUE HASH clause.

– If, however, your application performs only exact match lookups on the
primary key, then a hash index may offer better response time and
throughput. In such a case, specify the UNIQUE HASH clause. See "CREATE
TABLE" on page 5-99 for more information on the UNIQUE HASH clause.

– Use ALTER TABLE to change the representation of the primary key index for a
table.

■ For cache group tables with the propagate attribute and for tables of SWT and
AWT cache groups, foreign keys specified with ON DELETE CASCADE must be a
proper subset of foreign keys with ON DELETE CASCADE in the Oracle tables.

AUTOREFRESH in cache groups
The AUTOREFRESH parameter automatically propagates changes from the Oracle
database to TimesTen cache groups. For explicitly loaded cache groups, deletes,
updates and inserts are automatically propagated from the Oracle database to the
cache group. For dynamic cache groups, only deletes and updates are propagated.
Inserts to the specified Oracle tables are not propagated to dynamic cache groups.
They are dynamically loaded into IMDB Cache when referenced by the application.
They can also be explicitly loaded by the application.

To use AUTOREFRESH with a cache group, you must specify AUTOREFRESH when
you create the cache group. You can change the MODE, STATE and INTERVAL
AUTOREFRESH settings after a cache group has been created by using the ALTER
CACHE GROUP command. Once a cache group has been specified as either
AUTOREFRESH or PROPAGATE, you cannot change these attributes.

TimesTen supports FULL or INCREMENTAL AUTOREFRESH. In FULL mode, the
entire cache is periodically unloaded and then reloaded. In INCREMENTAL mode,
TimesTen installs triggers in the Oracle database to track changes and periodically
updates only the rows that have changed in the specified Oracle tables. The first
incremental refresh is always a full refresh, unless the autorefresh state is PAUSED.
The default mode is INCREMENTAL.

FULL AUTOREFRESH is more efficient when most of the Oracle table rows have been
changed. INCREMENTAL AUTOREFRESH is more efficient when there are fewer
changes.

TimesTen schedules an AUTOREFRESH operation when the transaction that contains
a statement with AUTOREFRESH specified is committed. The statement types that
cause AUTOREFRESH to be scheduled are:

CREATE CACHE GROUP

5-58 Oracle TimesTen In-Memory Database SQL Reference

■ A CREATE CACHE GROUP statement in which AUTOREFRESH is specified, and
the AUTOREFRESH state is specified as ON

■ An ALTER CACHE GROUP statement in which the AUTOREFRESH state has
been changed to ON

■ A LOAD CACHE GROUP statement on an empty cache group whose autorefresh
state is PAUSED

The specified interval determines how often AUTOREFRESH occurs.

The current STATE of AUTOREFRESH can be ON, OFF or PAUSED. By default, the
autorefresh state is PAUSED.

The NOT PROPAGATE attribute cannot be used with the AUTOREFRESH attribute.

Aging in cache groups
■ You can implement sliding windows with time-based aging. See "Configuring a

sliding window" in Oracle In-Memory Database Cache User's Guide.

■ After you have defined an aging policy for the table, you cannot change the policy
from LRU to time-based or from time-based to LRU. You must first drop aging
and then alter the table to add a new aging policy.

■ The aging policy must be defined to change the aging state.

■ LRU and time-based aging can be combined in one system. If you use only LRU
aging, the aging thread wakes up based on the cycle specified for the whole data
store. If you use only time-based aging, the aging thread wakes up based on an
optimal frequency. This frequency is determined by the values specified in the
CYCLE clause for all tables. If you use both LRU and time-based aging, then the
thread wakes up based on a combined consideration of both types.

■ Call the ttAgingScheduleNow procedure to schedule the aging process right
away regardless if the aging state is ON or OFF.

■ The following rules determine if a row is accessed or referenced for LRU aging:

– Any rows used to build the result set of a SELECT statement.

– Any rows used to build the result set of an INSERT...SELECT statement.

– Any rows that are about to be updated or deleted.

■ Compiled commands are marked invalid and need recompilation when you either
drop LRU aging from or add LRU aging to tables that are referenced in the
commands.

■ For LRU aging, if a child row is not a candidate for aging, then neither this child
row nor its parent row are deleted. ON DELETE CASCADE settings are ignored.

■ For time-based aging, if a parent row is a candidate for aging, then all child rows
are deleted. ON DELETE CASCADE (whether specified or not) is ignored.

■ Specify either the LRU aging or time-based aging policy on the root table. The
policy applies to all tables in the cache group.

■ For the time-based aging policy, you cannot add or modify the aging column. This
is because you cannot add or modify a NOT NULL column.

■ Restrictions on defining aging for a cache group:

– LRU aging is not supported on a cache group defined with the autorefresh
attribute.

CREATE CACHE GROUP

SQL Statements 5-59

– The aging policy cannot be added, altered, or dropped for read-only cache
groups or cache groups with the AUTOREFRESH attribute while the cache
agent is active. Stop the cache agent first.

– You cannot drop the column that is used for time-based aging.

Cache grid
To cache data in a cache grid, you must create a dynamic asynchronous writethrough
global cache group. Before you can create this cache group, the TimesTen database
must be associated with a cache grid. For more information on creating and using a
cache grid and creating and using global cache groups, see "Cache grid" and "Global
cache group" in Oracle In-Memory Database Cache User's Guide.

Examples
Create a READONLY cache group:

CREATE READONLY CACHE GROUP customerorders
AUTOREFRESH INTERVAL 10 MINUTES
FROM
customer (custid INT NOT NULL,

name CHAR(100) NOT NULL,
addr CHAR(100),
zip INT,
region CHAR(10),
PRIMARY KEY(custid)),

ordertab (orderid INT NOT NULL,
custid INT NOT NULL,
PRIMARY KEY (orderid),
FOREIGN KEY (custid) REFERENCES customer(custid));

Create an ASYNCHROUS WRITETHROUGH cache group:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP cstomers
FROM
customer (custid INT NOT NULL,

name CHAR(100) NOT NULL,
addr CHAR(100),
zip INT,
PRIMARY KEY(custid));

Create a SYNCHRONOUS WRITETHROUGH cache group:

CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP customers
FROM
customer (custid INT NOT NULL,

name CHAR(100) NOT NULL,
addr CHAR(100),
zip INT,
PRIMARY KEY(custid));

Create a USERMANAGED cache group:

CREATE USERMANAGED CACHE GROUP updateanywherecustomers
AUTOREFRESH

MODE INCREMENTAL
INTERVAL 30 SECONDS
STATE ON

FROM
customer (custid INT NOT NULL,

name CHAR(100) NOT NULL,

CREATE CACHE GROUP

5-60 Oracle TimesTen In-Memory Database SQL Reference

addr CHAR(100),
zip INT,
PRIMARY KEY(custid),
PROPAGATE);

Create a cache group with time-based aging. Specify agetimestamp as the column
for aging. Specify LIFETIME 2 hours, CYCLE 30 minutes. Aging state is not specified,
so the default setting (ON) is used.

CREATE READONLY CACHE GROUP agingcachegroup
AUTOREFRESH

MODE INCREMENTAL
INTERVAL 5 MINUTES
STATE PAUSED

FROM
customer (customerid NUMBER NOT NULL,

agetimestamp TIMESTAMP NOT NULL,
PRIMARY KEY (customerid))
AGING USE agetimestamp LIFETIME 2 HOURS CYCLE 30 MINUTES;

Command> DESCRIBE customer;
Table USER.CUSTOMER:
Columns:
*CUSTOMERID NUMBER NOT NULL
AGETIMESTAMP TIMESTAMP (6) NOT NULL

AGING USE AgeTimestamp LIFETIME 2 HOURS CYCLE 30 MINUTES ON
1 table found.
(primary key columns are indicated with *)

Use a synonym for a mixed case delimited identifier table name in Oracle so the mixed
case table name can be cached in TimesTen. First attempt to cache the mixed case
Oracle table name. You see the error "Could not find 'NameofTable' in
Oracle":

Command> AUTOCOMMIT 0;
Command> PASSTHROUGH 3;
Command> CREATE TABLE "MixedCase" (col1 NUMBER PRIMARY KEY NOT NULL);
Command> INSERT INTO "MixedCase" VALUES (1);
1 row inserted.
Command> COMMIT;
Command> CREATE CACHE GROUP MixedCase1 from "MixedCase"

(col1 NUMBER PRIMARY KEY NOT NULL);
 5140: Could not find SAMPLEUSER.MIXEDCASE in Oracle. May not have privileges.
The command failed.

Now create the synonym "MIXEDCASE" and use that synonym as the table name.

Command> AUTOCOMMIT 0;
Command> PASSTHROUGH 3;
Command> CREATE SYNONYM "MIXEDCASE" FOR "MixedCase";
Command> COMMIT;
Command> CREATE CACHE GROUP MixedCase2 FROM "MIXEDCASE"

(col1 NUMBER PRIMARY KEY NOT NULL);
Warning 5147: Cache group contains synonyms
Command> COMMIT;

Attempt to use a synonym name with a read-only cache group or a cache group with
the AUTOREFRESH attribute. You see an error:

Command> AUTOCOMMIT 0;
Command> PASSTHROUGH 3;
Command> CREATE SYNONYM "MIXEDCASE_AUTO" FOR "MixedCase";

CREATE CACHE GROUP

SQL Statements 5-61

Command> COMMIT;
Command> CREATE READONLY CACHE GROUP MixedCase3 AUTOREFRESH MODE

INCREMENTAL INTERVAL 10 MINUTES FROM "MIXEDCASE_AUTO"
(Col1 NUMBER PRIMARY KEY NOT NULL);

 5142: Autorefresh is not allowed on cache groups with Oracle synonyms
The command failed.

See also
ALTER CACHE GROUP
ALTER TABLE
DROP CACHE GROUP
FLUSH CACHE GROUP
LOAD CACHE GROUP
UNLOAD CACHE GROUP

CREATE FUNCTION

5-62 Oracle TimesTen In-Memory Database SQL Reference

CREATE FUNCTION

The CREATE FUNCTION statement creates a standalone stored function.

Required privilege
CREATE PROCEDURE (if owner) or CREATE ANY PROCEDURE (if not owner)

SQL syntax
CREATE [OR REPLACE] FUNCTION [Owner.]FunctionName

[(argument [IN|OUT|IN OUT][NOCOPY] datatype [DEFAULT expr][,...])]
RETURN datatype [invoker_rights_clause] [DETERMINISTIC]
{IS|AS} plsql_function_body

The syntax for the invoker_rights_clause:

AUTHID {CURRENT_USER|DEFINER}

You can specify invoker_rights_clause or DETERMINISTIC in any order.

Parameters
The CREATE FUNCTION statement has the parameters:

Parameter Description

OR REPLACE Specify OR REPLACE to re-create the function if it already
exists. Use this clause to change the definition of an
existing function without dropping and re-creating it.
When you re-create a function, TimesTen recompiles it.

FunctionName Name of function.

argument Name of argument or parameter. You can specify 0 or more
parameters for the function. If you specify a parameter,
you must specify a data type for the parameter. The data
type must be a PL/SQL data type.

For more information on PL/SQL data types, see Oracle
Database PL/SQL Language Reference.

IN| OUT |IN OUT Parameter modes.

IN is a read-only parameter. You can pass the parameter’s
value into the function but the function cannot pass the
parameter’s value out of the function and back to the
calling PL/SQL block.The value of the parameter cannot be
changed.

OUT is a write-only parameter. Use an OUT parameter to
pass a value back from the function to the calling PL/SQL
block. You can assign a value to the parameter.

IN OUT is a read/write parameter. You can pass values
into the function and return a value back to the calling
program (either the original, unchanged value or a new
value set within the function.

IN is the default.

CREATE FUNCTION

SQL Statements 5-63

Restrictions
TimesTen does not support:

■ parallel_enable_clause. You can specify the clause, but it has no effect.

■ call_spec clause

■ AS EXTERNAL

The CREATE FUNCTION statement is not replicated.

When you create or replace a function, the privileges granted on the function remain
the same. If you drop and re-create the object, the object privileges that were granted
on the original object are revoked.

Examples
Create function get_sal with one input parameter. Return salary as type
NUMBER.

NOCOPY Specify NOCOPY to instruct TimesTen to pass the parameter
as fast as possible. You can enhance performance when
passing a large value such as a record, an index-by-table, or
a varray to an OUT or IN OUT parameter. IN parameters
are always passed NOCOPY.

For more information on NOCOPY, see Oracle Database SQL
Language Reference.

DEFAULT expr Use this clause to specify a default value for the parameter.
You can specify := in place of the keyword DEFAULT.

RETURN datatype Required clause. A function must return a value. You must
specify the data type of the return value of the function.

Do not specify a length, precision, or scale for the data
type.

The data type is a PL/SQL data type.

For more information on PL/SQL data types, see Oracle
Database PL/SQL Language Reference.

invoker_rights_clause Lets you specify whether the function executes with the
privileges of the user who owns it or with the privileges of
the CURRENT_USER.

Specify CURRENT_USER to indicate that the function
executes with the privileges of the CURRENT_USER.

Specify DEFINER to indicate that the function executes
with the privileges of the owner of the function.

DEFINER is the default.

For more information, see Oracle Database SQL Language
Reference.

DETERMINISTIC Specify DETERMINISTIC to indicate that the function
should return the same result value whenever it is called
with the same values for its parameters.

For more information on the DETERMNISTIC clause, see
Oracle Database SQL Language Reference.

IS|AS Specify either IS or AS to declare the body of the function.

plsql_function_spec Specifies the function body.

Parameter Description

CREATE FUNCTION

5-64 Oracle TimesTen In-Memory Database SQL Reference

Command> CREATE OR REPLACE FUNCTION get_sal
 > (p_id employees.employee_id%TYPE) RETURN NUMBER IS
 > v_sal employees.salary%TYPE := 0;
 > BEGIN
 > SELECT salary INTO v_sal FROM employees
 > WHERE employee_id = p_id;
 > RETURN v_sal;
 > END get_sal;
 > /

Function created.

See also
Oracle Database PL/SQL Language Reference and Oracle Database SQL Language Reference

CREATE INDEX

SQL Statements 5-65

CREATE INDEX

The CREATE INDEX statement creates either a range index or a bitmap index on one
or more columns of a table or materialized view and assigns a name to the new index.

Required privilege
No privilege is required for table or materialized view owner.

INDEX for another user’s table or materialized view.

SQL syntax
CREATE [UNIQUE|BITMAP] INDEX [Owner.]IndexName ON
[Owner.]TableName ({ColumnName [ASC | DESC]}
[, ...])

Parameters
The CREATE INDEX statement has the parameters:

Description
■ If you do not specify UNIQUE or BITMAP, TimesTen creates a range index.

Parameter Description

UNIQUE Prohibits duplicates in the index. If UNIQUE is specified, each
possible combination of index key column values can occur in
only one row of the table. If UNIQUE is omitted, duplicate values
are allowed. When you create a unique index, all existing rows
must have unique values in the indexed columns. If you specify
UNIQUE, TimesTen creates a range index.

A range index:

■ Speeds up range searches (but can also be used for efficient
equality searches)

■ Is optimized for in-memory data management

■ Provides efficient sorting by column value

BITMAP Specify CREATE BITMAP INDEX to create an index where the
information about rows with each unique value is encoded in a
bitmap. Each bit in the bitmap corresponds to a row in the table.

Use a bitmap index for columns that do not have many unique
values.

[Owner.] IndexName Name to be assigned to the new index. A table cannot have two
indexes with the same name. If the owner is specified, it must be
the same as the owner of the table.

[Owner.] TableName Designates the table or materialized view for which an index is to
be created.

ColumnName Name of a column to be used as an index key. You can specify up
to 16 columns in order from major index key to minor index key.

[ASC|DESC] Specifies the order of the index to be either ascending (the
default) or descending. In TimesTen, this parameter is currently
ignored.

CREATE INDEX

5-66 Oracle TimesTen In-Memory Database SQL Reference

■ Specify a bitmap index on each column to increase the performance of complex
queries that specify multiple predicates on multiple columns connected by the
AND or OR operator. At runtime, TimesTen finds bitmaps of rows that satisfy each
predicate and bitmaps from different predicates are combined using bitwise
logical operation and then the resultant bitmaps are converted to qualified rows.

■ Bitmap indexes are used to satisfy these predicates:

– Equality predicates. For example: 'x1 = 1'

– Range predicates. For example: 'y1 > 10' and'z1 BETWEEN 1 and 10'

– AND predicates. For example: 'x1 > 10 AND y1 > 10'

– OR predicates. For example: 'x1 > 10 OR y1 > 10'

– Complex predicates with AND or OR. For example: '(x1 > 10 AND y1 >
10) OR (z1 > 10)'

– NOT EQUAL predicate with AND. For example: 'x1 = 1 and y1 != 1'

■ Bitmap indexes:

– COUNT (*) optimization counts rowids from bitmaps.

– Are used to optimize queries that group by a prefix of columns of the bitmap
index.

– Are used to optimize distinct queries and order by queries.

– Are used in a MERGE join.

■ The CREATE INDEX statement enters the definition of the index in the system
catalog and initializes the necessary data structures. Any rows in the table are then
added to the index. In TimesTen, performance is the same regardless of whether
the table is created, indexed and populated or created, then populated and
indexed.

■ If UNIQUE is specified, all existing rows must have unique values in the indexed
column(s).

■ The new index is maintained automatically until the index is deleted by a DROP
INDEX statement or until the table associated with it is dropped.

■ Any prepared statements that reference the table with the new index are
automatically prepared again the next time they are executed. Then the statements
can take advantage, if possible, of the new index.

■ NULL compares higher than all other values for sorting.

■ An index on a temporary table cannot be created by a connection if any other
connection has a non-empty instance of the table.

■ If you are using linguistic comparisons, you can create a linguistic index. A
linguistic index uses sort key values and storage is required for these values. Only
one unique value for NLS_SORT is allowed for an index. For more information on
linguistic indexes and linguistic comparisons, see "Using linguistic indexes" in
Oracle TimesTen In-Memory Database Operations Guide.

■ If you create indexes that are redundant, TimesTen generates warnings or errors.
Call ttRedundantIndexCheck to see the list of redundant indexes for your
tables.

CREATE INDEX

SQL Statements 5-67

Examples
Create a table and then create a bitmap index on the table. Use the ttIsql SHOWPLAN
command to verify that the bitmap index is used in the query:

Command> CREATE TABLE tab1 (id NUMBER);
Command> INSERT INTO tab1 VALUES (10);
1 row inserted.
Command> INSERT INTO tab1 VALUES (20);
1 row inserted.
Command> CREATE BITMAP INDEX bitmap_id ON tab1 (id);
Command> COMMIT;
Command> SET AUTOCOMMIT OFF;
Command> SHOWPLAN 1;
Command> SELECT * FROM tab1 WHERE id = 10;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 1
 OPERATION: RowLkBitmapScan
 TBLNAME: TAB1
 IXNAME: BITMAP_ID
 INDEXED CONDITION: TAB1.ID = 10
 NOT INDEXED: <NULL>

< 10 >
1 row found.

The regions table in the HR schema creates a unique index on region_id. Issue the
ttIsql INDEXES command on table regions. You see the unique range index
regions.

Command> INDEXES REGIONS;

Indexes on table SAMPLEUSER.REGIONS:
 REGIONS: unique range index on columns:
 REGION_ID
 (referenced by foreign key index COUNTR_REG_FK on table SAMPLEUSER.COUNTRIES)
 1 index found.

1 table found.

Attempt to create a unique index i on table regions indexing on column
region_id. You see a warning message:

Command> CREATE UNIQUE INDEX i ON regions (region_id);
Warning 2232: New index I is identical to existing index REGIONS; consider
dropping index I

Call ttRedundantIndexCheck to see warning message for this index:

Command> CALL ttRedundantIndexCheck ('regions');
< Index SAMPLEUSER.REGIONS.I is identical to index SAMPLEUSER.REGIONS.REGIONS;
consider dropping index SAMPLEUSER.REGIONS.I >
1 row found.

Create table redundancy and define columns co11 and col2. Create two user
indexes on col1 and col2. You see an error message when you attempt to create the
second index r2. Index r1 is created. Index r2 is not created.

Command> CREATE TABLE redundancy (col1 CHAR (30), col2 VARCHAR2 (30));

CREATE INDEX

5-68 Oracle TimesTen In-Memory Database SQL Reference

Command> CREATE INDEX r1 ON redundancy (col1, col2);
Command> CREATE INDEX r2 ON redundancy (col1, col2);
 2231: New index R2 would be identical to existing index R1
The command failed.

Issue the ttIsql command INDEXES on table redundancy to show that only index
r1 is created:

Command> INDEXES redundancy;

Indexes on table SAMPLEUSER.REDUNDANCY:
 R1: non-unique range index on columns:
 COL1
 COL2
 1 index found.

1 table found.

This unique index ensures that all part numbers are unique.

CREATE UNIQUE INDEX purchasing.partnumindex
ON purchasing.parts (partnumber);

Create a linguistic index named german_index on table employees1. If you wish to
have more than one linguistic sort, create a second linguistic index.

Command> CREATE TABLE employees1 (id CHARACTER (21),
id2 character (21));
Command> CREATE INDEX german_index ON employees1
(NLSSORT(id, 'NLS_SORT=GERMAN'));

Command> CREATE INDEX german_index2 ON employees1
NLSSORT(id2, 'nls_sort=german_ci'));

Command> indexes employees1;
Indexes on table SAMPLEUSER.EMPLOYEES1:
GERMAN_INDEX: non-unique range index on columns:
NLSSORT(ID,'NLS_SORT=GERMAN')

GERMAN_INDEX2: non-unique range index on columns:
NLSSORT(ID2,'nls_sort=german_ci')

2 indexes found.
1 table found.

See also
DROP INDEX

CREATE MATERIALIZED VIEW

SQL Statements 5-69

CREATE MATERIALIZED VIEW

The CREATE MATERIALIZED VIEW statement creates a view of the table specified in
the SelectQuery clause. The original tables used to create a view are referred to as
"detail" tables. The view can be refreshed synchronously or asynchronously with
regard to changes in the detail tables. If you create an asynchronous materialized view,
you must first create a materialized view log on the detail table. See "CREATE
MATERIALIZED VIEW LOG" on page 5-74.

Required privilege
■ CREATE MATERIALIZED VIEW (if owner) or CREATE ANY MATERIALIZED

VIEW (if not owner) and

■ SELECT on the detail tables and

■ CREATE TABLE (if owner) or CREATE ANY TABLE (if not owner)

SQL syntax
CREATE MATERIALIZED VIEW ViewName
 [REFRESH
 [FAST | COMPLETE]
 [NEXT SYSDATE[+NUMTODSINTERVAL(IntegerLiteral),IntervalUnit]]
 AS SelectQuery
 [PRIMARY KEY (ColumnName [,…])]
 [UNIQUE HASH ON (HashColumnName [,…])
 PAGES = PrimaryPages]

Parameters
The CREATE MATERIALIZED VIEW statement has the parameters:

Parameter Description

ViewName Name assigned to the new view.

REFRESH Specifies an asynchronous materialized view.

[FAST | COMPLETE] Refresh methods. FAST specifies incremental
refresh. COMPLETE specifies full refresh. If the
method is omitted, COMPLETE is the default
refresh method.

NEXT SYSDATE If NEXT SYSDATE is specified without
NUMTODSINTERVAL, the materialized view will
be refreshed incrementally every time a detail
table is modified. The refresh occurs in a
separate transaction immediately after the
transaction that modifies the detail table has
been committed. You cannot specify a full
refresh (COMPLETE) every time a detail table is
modified.

If NEXT SYSDATE is omitted, then the
materialized view will not be refreshed
automatically. It must be refreshed manually.

CREATE MATERIALIZED VIEW

5-70 Oracle TimesTen In-Memory Database SQL Reference

Description
Restrictions on synchronous materialized view and detail tables:

■ A materialized view is read-only and cannot be updated directly. A materialized
view is updated only when changes are made to the associated detail tables.
Therefore a materialized view cannot be the target of a DELETE, UPDATE or
INSERT statement.

■ Materialized views defined on replicated tables may result in replication failures
or inconsistencies if the materialized view is specified so that overflow or
underflow conditions occur when the materialized view is updated.

■ Detail tables can be replicated, but materialized views themselves cannot be
replicated. If detail tables are replicated, TimesTen automatically updates the
corresponding views.

■ A materialized view and its detail tables cannot be part of a cache group.

■ Do not create a materialized view with the same name as a sequence.

■ Referential constraints cannot be defined on materialized views.

■ By default, a range index is created to enforce the primary key for a materialized
view. Use the UNIQUE HASH clause to specify a hash index for the primary key.

– If your application performs range queries over a materialized view's primary
key, then choose a range index for that view by omitting the UNIQUE HASH
clause.

[+NUMTODSINTERVAL(IntegerLiteral)
,IntervalUnit]

If this is specified, the materialized view will be
refreshed at the specified interval.
IntegerLiteral must be an integer.
IntervalUnit must be one of the following
values: 'DAY', 'HOUR', 'MINUTE', 'SECOND'.

If [NEXT
SYSDATE[+NUMTODSINTERVAL(IntegerLit
eral),IntervalUnit] is not specified, the
materialized view will not be refreshed
automatically. You can manually refresh the
view by using the REFRESH MATERIALIZED
VIEW statement.

SelectQuery Selects column from the detail tables to be used
in the view. Can also create indexes on the view.

ColumnName Name of the column(s) that forms the primary
key for the view to be created. Up to 16 columns
can be specified for the primary key. Each result
column name of a viewed table must be unique.
The column name definition cannot contain the
table or owner component.

HashColumnName Column defined in the view that is to participate
in the hash key of this table. The columns
specified in the hash index must be identical to
the columns in the primary key.

PrimaryPages Specifies the expected number of pages in the
table. This number determines the number of
hash buckets created for the hash index. The
minimum is 1. If your estimate is too small,
performance is degraded. See "CREATE TABLE"
on page 5-99 section for more information.

Parameter Description

CREATE MATERIALIZED VIEW

SQL Statements 5-71

– If your application performs only exact match lookups on the primary key,
then a hash index may offer better response time and throughput. In such a
case, specify the UNIQUE HASH clause. See "CREATE TABLE" on page 5-99
for more information about the UNIQUE HASH clause.

■ Use ALTER TABLE to change the representation of the primary key index or resize
a hash index.

■ You cannot add or drop columns in the materialized view with the ALTER TABLE
statement. To change the structure of the materialized view, drop and re-create the
view.

■ Use the DROP [MATERIALIZED] VIEW statement to drop a materialized view.

There are several restrictions on the query that is used to define the materialized view:

■ A SELECT * query in a materialized view definition is expanded when the view is
created. Columns added to the detail table after a materialized view is created do
not affect the materialized view.

■ Temporary tables cannot be used in a materialized view definition.
Non-materialized views and derived tables cannot be used to define a
materialized view.

■ All columns in the GROUP BY list must be included in the select list.

■ Aggregate view must include a COUNT(*) in the select list.

■ SUM and COUNT are allowed, but not expressions involving them, including
AVG.

■ The following cannot be used in a SELECT statement that is creating a materialized
view:

– DISTINCT

– FIRST

– HAVING

– ORDER BY

– UNION

– UNION ALL

– MINUS

– INTERSECT

– JOIN

– User functions: USER, CURRENT_USER, SESSION_USER

– Subqueries

– NEXTVAL and CURRVAL

– Derived tables and joined tables

■ Each expression in the select list must have a unique name. The name of a simple
column expression is that column's name unless a column alias is defined. ROWID
is considered an expression and needs an alias.

■ No SELECT FOR UPDATE or SELECT FOR INSERT statements can be used on a
view.

■ Each inner table can only be outer joined with at most one table.

CREATE MATERIALIZED VIEW

5-72 Oracle TimesTen In-Memory Database SQL Reference

■ Self joins are allowed. A self join is a join of a table to itself. This table appears
twice in the FROM clause and is followed by table aliases that qualify column
names in the join condition.

There are no additional restrictions on asynchronous materialized views with full
(COMPLETE) refresh.

In addition to the restrictions in a SELECT statement that is creating a materialized
view, the following restrictions apply when creating asynchronous materialized views
with incremental (FAST) refresh:

■ Aggregate functions are not supported

■ Outer joins are not supported.

■ The SELECT list must include the ROWID or the primary key columns for all the
detail tables.

■ The materialized view log must be created for each detail table in the
asynchronous material view with incremental refresh before creating the
asynchronous materialized view.

■ The materialized view log must include all the columns used in the asynchronous
materialized views.

■ TimesTen creates a unique index for a asynchronous materialized views that are
refreshed incrementally. The index is created on the primary key or ROWID of the
detail tables included in the SELECT list.

Examples
Create a materialized view of columns from the customer and bookorder tables.

CREATE MATERIALIZED VIEW custorder AS
 SELECT custno, custname, ordno, book
 FROM customer, bookorder
 WHERE customer.custno=bookorder.custno;

Create a materialized view of columns x1 and y1 from the t1 table.

CREATE MATERIALIZED VIEW v1 AS SELECT x1, y1 FROM t1
 PRIMARY KEY (x1) UNIQUE HASH (x1) PAGES=100;

Create a materialized view from an outer join of columns x1 and y1 from the t1 and
t2 tables.

CREATE MATERIALIZED VIEW v2 AS SELECT x1, y1 FROM t1, t2
 WHERE x1=x2(+);

Create an asynchronous materialized view called mv1 with incremental refresh. The
materialized view will be refreshed immediately after updates to employees have
been committed. The columns in mv1 are employee_id and email. (You must create
a materialized view log before you create an asynchronous materialized view.)

CREATE MATERALIZED VIEW mv1
 REFRESH FAST NEXT SYSDATE
 AS SELECT employee_id, email FROM employees;
107 rows materialized.

See also
CREATE MATERIALIZED VIEW LOG
CREATE TABLE

CREATE MATERIALIZED VIEW

SQL Statements 5-73

CREATE VIEW
DROP [MATERIALIZED] VIEW
REFRESH MATERIALIZED VIEW

CREATE MATERIALIZED VIEW LOG

5-74 Oracle TimesTen In-Memory Database SQL Reference

CREATE MATERIALIZED VIEW LOG

The CREATE MATERIALIZED VIEW LOG statement creates a log in which changes to
a table are recorded. The log is required for an asynchronous materialized view that is
refreshed incrementally. The log must be created before the materialized view is
created. The log is a table in the user’s schema called MVLOG$_ID, where ID is a
system-generated ID.

Required privileges
SELECT on the detail table and

CREATE TABLE or CREATE ANY TABLE (if not owner)

SQL syntax
CREATE MATERIALIZED VIEW LOG ON tableName
 [WITH [PRIMARY KEY][,ROWID]|[ROWID][,PRIMARY KEY] [(columnName[,...])]]

Parameters

Description
■ Use the WITH clause to indicate the keys and columns for which changes will be

recorded in the materialized view log.

■ Specify the PRIMARY KEY option to record changes in the primary key columns.
It is the default if the WITH clause is omitted or ROWID is not specified.

■ Specify the ROWID option to record the rowid of all changed rows. The ROWID
option is useful when the table does not have a primary key or when you do not
want to use the primary key when you create the materialized view.

■ You can specify both PRIMARY KEY and ROWID. The materialized view log may
be used by more than one asynchronous materialized view using the specified
table as the detail table.

■ Only one materialized view log is created for a table, even if the table is the detail
table for more than one materialized view with FAST refreshes. Make sure to
include all the columns that are used in different asynchronous materialized views
with FAST refresh.

■ A materialized view log cannot be created using a materialized view as the table
or for tables in cache groups.

■ A materialized view log cannot be altered to add or drop columns.

■ You can specify only one PRIMARY KEY clause, one ROWID clause and one
column list for a materialized view log.

■ You cannot include the primary key columns in the column list when you specify
the PRIMARY KEY option.

Parameter Description

tableName Name of the detail table for the materialized view

[(columnName[,...]) List of columns for which changes will be recorded in the log.

CREATE MATERIALIZED VIEW LOG

SQL Statements 5-75

Examples
Create a materialized view log on the employees table. Include employee_id (the
primary key) and email in the log.

CREATE MATERIALIZED VIEW LOG ON employees WITH PRIMARY KEY (email);

See also
CREATE MATERIALIZED VIEW
DROP MATERIALIZED VIEW LOG

CREATE PACKAGE

5-76 Oracle TimesTen In-Memory Database SQL Reference

CREATE PACKAGE

The CREATE PACKAGE statement creates the specification for a standalone package,
which is an encapsulated collection of related procedures, functions, and other
program objects stored together in your database. The package specification declares
these objects. The package body defines these objects.

Required privilege
 CREATE PROCEDURE (if owner) or CREATE ANY PROCEDURE (if not owner)

SQL syntax
CREATE [OR REPLACE] PACKAGE [Owner.]PackageName

[invoker_rights_clause] {IS|AS}
plsql_package_spec

The syntax for the invoker_rights_clause:

AUTHID {CURRENT_USER | DEFINER}

Parameters
The CREATE PACKAGE statement has the parameters:

Description
The CREATE PACKAGE statement is not replicated.

Parameter Description

OR REPLACE Specify OR REPLACE to recreate the package specification
if it already exists. Use this clause to change the
specification of an existing package without dropping and
recreating the package. When you change a package
specification, TimesTen recompiles it.

PackageName Name of the package.

invoker_rights_clause Lets you specify whether the package executes with the
privileges and in the database of the user who owns it or
with the privileges and in the database of the
CURRENT_USER.

Specify CURRENT_USER to indicate that the package
executes with the privileges of the CURRENT_USER.

Specify DEFINER to indicate that the package executes
with the privileges of the owner of the database in which
the package resides.

DEFINER is the default.

For more information, see Oracle Database SQL Language
Reference.

IS|AS Specify either IS or AS to declare the body of the function.

plsql_package_spec Specifies the package specification. Can include type
definitions, cursor declarations, variable declarations,
constant declarations, exception declarations and PL/SQL
subprogram declarations.

CREATE PACKAGE

SQL Statements 5-77

When you create or replace a package, the privileges granted on the package remain
the same. If you drop and re-create the object, the object privileges that were granted
on the original object are revoked.

See also
Oracle Database PL/SQL Language Reference and Oracle Database SQL Language Reference

CREATE PACKAGE BODY

5-78 Oracle TimesTen In-Memory Database SQL Reference

CREATE PACKAGE BODY

The CREATE PACKAGE BODY statement creates the body of a standalone package.
A package is an encapsulated collection of related procedures, functions, and other
program objects stored together in your database. A package specification declares
these objects. A package body defines these objects.

Required privilege
 CREATE PROCEDURE (if owner) or CREATE ANY PROCEDURE (if not owner)

SQL syntax
CREATE [OR REPLACE] PACKAGE BDOY [Owner.]PackageBody

{IS|AS} plsql_package_body

Parameters
The CREATE PACKAGE BODY statement has the parameters:

Description
The CREATE PACKAGE BODY statement is not replicated.

When you create or replace a package body, the privileges granted on the package
body remain the same. If you drop and re-create the object, the object privileges that
were granted on the original object are revoked.

See also
Oracle Database PL/SQL Language Reference and Oracle Database SQL Language Reference

Parameter Description

OR REPLACE Specify OR REPLACE to recreate the package body if it already
exists. Use this clause to change the body of an existing
package without dropping and recreating it. When you change
a package body, TimesTen recompiles it.

PackageBody Name of the package body.

IS|AS Specify either IS or AS to declare the body of the function.

plsql_package_body Specifies the package body which consists of PL/SQL
subprograms.

CREATE PROCEDURE

SQL Statements 5-79

CREATE PROCEDURE

The CREATE PROCEDURE statement creates a standalone stored procedure.

Required privilege
CREATE PROCEDURE (if owner) or CREATE ANY PROCEDURE (if not owner)

SQL syntax
CREATE [OR REPLACE] PROCEDURE [Owner.]ProcedureName

[(argument [IN|OUT|IN OUT][NOCOPY] datatype [DEFAULT expr][,...])]
[invoker_rights_clause] [DETERMINISTIC]
{IS|AS} plsql_procedure_body

The syntax for the invoker_rights_clause:

AUTHID {CURRENT_USER|DEFINER}

You can specify invoker_rights_clause or DETERMINISTIC in any order.

Parameters
The CREATE PROCEDURE statement has the parameters:

Parameter Description

OR REPLACE Specify OR REPLACE to re-create the procedure if it already
exists. Use this clause to change the definition of an existing
procedure without dropping and recreating it. When you
re-create a procedure, TimesTen recompiles it.

ProcedureName Name of procedure.

argument Name of argument/parameter. You can specify 0 or more
parameters for the procedure. If you specify a parameter, you
must specify a data type for the parameter. The data type must
be a PL/SQL data type.

For more information on PL/SQL data types, see Oracle
Database PL/SQL Language Reference.

[IN| OUT |IN OUT] Parameter modes.

IN is a read-only parameter. You can pass the parameter’s
value into the procedure but the procedure cannot pass the
parameter’s value out of the procedure and back to the calling
PL/SQL block.The value of the parameter cannot be changed.

OUT is a write-only parameter. Use an OUT parameter to pass a
value back from the procedure to the calling PL/SQL block. You
can assign a value to the parameter.

IN OUT is a read/write parameter. You can pass values into the
procedure and return a value back to the calling program (either
the original, unchanged value or a new value set within the
procedure.

IN is the default.

CREATE PROCEDURE

5-80 Oracle TimesTen In-Memory Database SQL Reference

Restrictions
TimesTen does not support:

■ call_spec clause

■ AS EXTERNAL clause

The CREATE PROCEDURE statement is not replicated.

Description
■ The namespace for PL/SQL procedures is distinct from the TimesTen built-in

procedures. You can create a PL/SQL procedure with the same name as a
TimesTen built-in procedure.

■ When you create or replace a procedure, the privileges granted on the procedure
remain the same. If you drop and re-create the object, the object privileges that
were granted on the original object are revoked.

Examples
Create a procedure query_emp to retrieve information about an employee. Pass the
employee_id 171 to the procedure and retrieve the last_name and salary into
two OUT parameters.

Command> CREATE OR REPLACE PROCEDURE query_emp
 > (p_id IN employees.employee_id%TYPE,

NOCOPY Specify NOCOPY to instruct TimesTen to pass the parameter as
fast as possible. Can enhance performance when passing a large
value such as a record, an index-by-table, or a varray to an OUT
or IN OUT parameter. IN parameters are always passed
NOCOPY.

For more information on NOCOPY, see Oracle Database SQL
Language Reference.

DEFAULT expr Use this clause to specify a DEFAULT value for the parameter.
You can specify := in place of the keyword DEFAULT.

invoker_rights_clause Lets you specify whether the procedure executes with the
privileges and in the database of the user who owns it or with
the privileges and in the database of the CURRENT_USER.

Specify CURRENT_USER to indicate that the procedure executes
with the privileges of the CURRENT_USER.

Specify DEFINER to indicate that the procedure executes with
the privileges of the owner of the database in which the
procedure resides.

DEFINER is the default.

For more information, see Oracle Database SQL Language
Reference.

DETERMINISTIC Specify DETERMINISTIC to indicate that the procedure should
return the same result value whenever it is called with the same
values for its parameters.

For more information on the DETERMNISTIC clause, see Oracle
Database SQL Language Reference.

IS|AS Specify either IS or AS to declare the body of the procedure.

plsql_procedure_body Specifies the procedure body.

Parameter Description

CREATE PROCEDURE

SQL Statements 5-81

 > p_name OUT employees.last_name%TYPE,
 > p_salary OUT employees.salary%TYPE) IS
 > BEGIN
 > SELECT last_name, salary INTO p_name, p_salary
 > FROM employees
 > WHERE employee_id = p_id;
 > END query_emp;
 > /

Procedure created.

See also
Oracle Database PL/SQL Language Reference and Oracle Database SQL Language Reference

CREATE REPLICATION

5-82 Oracle TimesTen In-Memory Database SQL Reference

CREATE REPLICATION

TimesTen SQL configuration for replication provides a programmable way to
configure replication. The configuration can be embedded in C, C++ or Java code.
Replication can be configured locally or from remote systems using client/server.

In addition, you need to use the ttRepAdmin utility to maintain operations not
covered by the supported SQL statements. Use ttRepAdmin to change replication
state, duplicate data stores, list the replication configuration and view replication
status.

The CREATE REPLICATION statement:

■ Defines a replication scheme at a participating data store.

■ Installs the specified configuration in the executing data store's replication system
tables.

■ Typically consists of one or more replication ELEMENT specifications and zero or
more STORE specifications.

Required privilege
ADMIN

Definitions
A replication element is an entity that TimesTen synchronizes between data stores. A
replication element can be a whole table or a data store. A data store can include most
types of tables and cache groups. It can include only specified tables and cache groups,
or include all tables except specified tables and cache groups. It cannot include
temporary tables or views, whether materialized and nonmaterialized.

A replication scheme is a set of replication elements, as well as the data stores that
maintain copies of these elements.

When replicating cache groups:

■ When replicating cache groups between data stores, both cache groups must be
identical, with the exception of the settings for AUTOREFRESH and PROPAGATE.

■ When replicating a cache group with AUTOREFRESH, the cache group on the
subscriber must set the autorefresh STATE to OFF. In a bidirectional replication
scheme, one of the cache groups must set the autorefresh STATE to OFF.

■ If a master cache group specifies PROPAGATE, the subscriber cache group must
set the autorefresh STATE to OFF.

For more detailed information on SQL configuration for replication, see Oracle
TimesTen In-Memory Database TimesTen to TimesTen Replication Guide.

SQL syntax
CREATE REPLICATION [Owner.]ReplicationSchemeName
{ ELEMENT ElementName
{ DATASTORE | { TABLE [Owner.]TableName [CheckConflicts]} |

SEQUENCE [Owner.]SequenceName}
{ MASTER | PROPAGATOR } FullStoreName
[TRANSMIT { NONDURABLE | DURABLE }]
{ SUBSCRIBER FullStoreName [,...]

[ReturnServiceAttribute] } [, ...] }

CREATE REPLICATION

SQL Statements 5-83

[...]
[{INCLUDE | EXCLUDE}

 {TABLE [[Owner.]TableName[,...]] |
CACHE GROUP [[Owner.]CacheGroupName[,...]] |
SEQUENCE [[Owner.]SequenceName[,...]} [,...]]

[STORE FullStoreName [StoreAttribute [...]]] [...]
[NetworkOperation[...]]

Syntax for CheckConflicts is described in "CHECK CONFLICTS" on page 5-89.

Syntax for ReturnServiceAttribute:

{ RETURN RECEIPT [BY REQUEST] |
RETURN TWOSAFE [BY REQUEST] |
NO RETURN }

Syntax for StoreAttribute:

[DISABLE RETURN {SUBSCRIBER | ALL} NumFailures]
[RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED]
[DURABLE COMMIT {ON | OFF}]
[RESUME RETURN MilliSeconds]
[LOCAL COMMIT ACTION {NO ACTION | COMMIT}]
[RETURN WAIT TIME Seconds]
[COMPRESS TRAFFIC {ON | OFF}
[PORT PortNumber]
[TIMEOUT Seconds]
[FAILTHRESHOLD Value]
[CONFLICT REPORTING SUSPEND AT Value]
[CONFLICT REPORTING RESUME AT Value]

 [TABLE DEFINITION CHECKING {RELAXED|EXACT}]

Syntax for NetworkOperation:

ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }

PRIORITY Priority } [...]

Parameters
The CREATE REPLICATION statement has the parameters:

Parameter Description

[Owner.]ReplicationScheme
Name

Name assigned to the new replication scheme. Replication
schemes should have names that are unique from all other
data store objects.

CheckConflicts Check for replication conflicts when simultaneously
writing to bidirectionally replicated data stores. See
"CHECK CONFLICTS" on page 5-89.

COMPRESS TRAFFIC {ON |
OFF}

Compress replicated traffic to reduce the amount of
network bandwidth. ON specifies that all replicated traffic
for the data store defined by STORE be compressed. OFF
(the default) specifies no compression. See "Compressing
replicated traffic" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide for details.

CREATE REPLICATION

5-84 Oracle TimesTen In-Memory Database SQL Reference

CONFLICT REPORTING
SUSPEND AT Value

Suspends conflict resolution reporting.

Value is a non-negative integer. The default is 0 and
means never suspend. Conflict reporting is suspended
when the rate of conflict exceeds Value. If you set Value
to 0, conflict reporting suspension is turned off.

Use this clause for table level replication.

CONFLICT REPORTING RESUME
AT Value

Resumes conflict resolution reporting.

Value is a non-negative integer. Conflict reporting is
resumed when the rate of conflict falls below Value. The
default is 1.

Use this clause for table level replication.

DATASTORE Define entire data store as ELEMENT. This type of ELEMENT
can only be defined for a master data store that is not
configured with an ELEMENT of type TABLE in the same or
a different replication scheme. See "Defining replication
elements" in Oracle TimesTen In-Memory Database TimesTen
to TimesTen Replication Guide.

{INCLUDE|EXCLUDE}

{[TABLE[Owner.]TableName
[,...]]|

CACHE GROUP

[[Owner.]CacheGroupName
[,...]]|

SEQUENCE

[[Owner.]SequenceName[,..
.]]} [,...]

INCLUDE includes in the DATASTORE element only the
tables, sequences or cache groups listed. Use one INCLUDE
clause for each object type (table, sequence or cache
group).

EXCLUDE includes in the DATASTORE element all tables,
sequences or cache groups except for those listed. Use one
EXCLUDE clause for each object type (table, sequence or
cache group).

DISABLE RETURN
{SUBSCRIBER|ALL}
NumFailures

Set the return service failure policy so that return service
blocking is disabled after the number of timeouts specified
by NumFailures. Selecting SUBSCRIBER applies this
policy only to the subscriber that fails to acknowledge
replicated updates within the set timeout period. ALL
applies this policy to all subscribers should any of the
subscribers fail to respond. This failure policy can be
specified for either the RETURN RECEIPT or RETURN
TWOSAFE service.

If DISABLE RETURN is specified but RESUME RETURN is
not specified, the return services remain off until the
replication agent for the data store has been restarted.

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

DURABLE COMMIT {ON|OFF} Set to override the DurableCommits setting on a data
store and enable durable commit when return service
blocking has been disabled by DISABLE RETURN.

Parameter Description

CREATE REPLICATION

SQL Statements 5-85

ELEMENT ElementName The entity that TimesTen synchronizes between data
stores. TimesTen supports the entire data store
(DATASTORE) and whole tables (TABLE) as replication
elements.

ElementName is the name given to the replication
element. The ElementName for a TABLE element can be
up to 30 characters in length. The ElementName for a
DATASTORE element must be unique with respect to other
DATASTORE element names within the first 20 chars. Each
ElementName must be unique within a replication
scheme. Also, you cannot define two ELEMENT
descriptions for the same element.

See "Defining replication elements" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide
for details.

FAILTHRESHOLD Value The number of log files that can accumulate for a
subscriber data store. If this value is exceeded, the
subscriber is set to the Failed state.The value 0 means "No
Limit." This is the default.

See "Setting the log failure threshold" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.

FullStoreName The data store, specified as one of the following:

■ SELF

■ The prefix of the data store file name

For example, if the data store path is
directory/subdirectory/data.ds0, then data is
the data store name that should be used.

This is the data store file name specified in the DataStore
attribute of the DSN description with optional host ID in
the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host name
assigned to one or more IP addresses, as described in
"Configuring host IP addresses" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.
Host names containing special characters must be
surrounded by double quotes. For example:
"MyHost-500". Host names can be up to 30 characters
long.

Parameter Description

CREATE REPLICATION

5-86 Oracle TimesTen In-Memory Database SQL Reference

LOCAL COMMIT ACTION{NO
ACTION|COMMIT}

Specifies the default action to be taken for a return twosafe
transaction in the event of a timeout.

Note: This attribute is only valid when the RETURN
TWOSAFE or RETURN TWOSAFE BY REQUEST attribute is
set in the SUBSCRIBER clause.

NO ACTION: On timeout, the commit function returns to
the application, leaving the transaction in the same state it
was in when it entered the commit call, with the exception
that the application is not able to update any replicated
tables. The application can reissue the commit or rollback
the call. This is the default.

COMMIT: On timeout, the commit function attempts to
perform a COMMIT to end the transaction locally. No more
operations are possible on the same transaction.

This setting can be overridden for specific transactions by
calling the localAction parameter in the
ttRepSyncSet procedure.

MASTER FullStoreName The data store on which applications update the specified
ELEMENT. The MASTER data store sends updates to its
SUBSCRIBER data stores. The FullStoreName must be
the data store specified in the DataStore attribute of the
DSN description.

NO RETURN Specifies that no return service is to be used. This is the
default.

For details on the use of the return services, see "Using a
return service" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

PORT PortNumber The TCP/IP port number on which the replication agent
for the data store listens for connections. If not specified,
the replication agent automatically allocates a port
number.

PROPAGATOR FullStoreName The data store that receives replicated updates and passes
them on to other data stores. The FullStoreName must
be the data store specified in the DataStore attribute of
the DSN description.

RESUME RETURN MilliSeconds If return service blocking has been disabled by DISABLE
RETURN, this attribute sets the policy on when to re-enable
return service blocking. Return service blocking is
re-enabled as soon as the failed subscriber acknowledges
the replicated update in a period of time that is less than
the specified MilliSeconds.

If DISABLE RETURN is specified but RESUME RETURN is
not specified, the return services remain off until the
replication agent for the data store has been restarted.

RETURN RECEIPT [BY
REQUEST]

Enables the return receipt service, so that applications that
commit a transaction to a master data store are blocked
until the transaction is received by all subscribers.

RETURN RECEIPT applies the service to all transactions. If
you specify RETURN REQUEST BY REQUEST, you can use
the ttRepSyncSet procedure to enable the return receipt
service for selected transactions. For details on the use of
the return services, see "Using a return service" in Oracle
TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide

Parameter Description

CREATE REPLICATION

SQL Statements 5-87

RETURN SERVICES {ON|OFF}
WHEN [REPLICATION]
STOPPED

Set the return service failure policy so that return service
blocking is either unchanged or disabled when the
replication agent is in the Stop or Pause state.

OFF is the default when using the return receipt service. ON
is the default when using the return twosafe service

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

RETURN TWOSAFE [BY
REQUEST]

Enables the return twosafe service, so that applications that
commit a transaction to a master data store are blocked
until the transaction is committed on all subscribers.

Note: This service can only be used in a bidirectional
replication scheme where the elements are defined as
DATASTORE.

RETURN TWOSAFE applies the service to all transactions. If
you specify RETURN TWOSAFE BY REQUEST, you can use
the ttRepSyncSet procedure to enable the return receipt
service for selected transactions. For details on the use of
the return services, see "Using a return service" in Oracle
TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide.

RETURN WAIT TIME Seconds Specifies the number of seconds to wait for return service
acknowledgement. The default value is 10 seconds. A
value of '0' means that there is no timeout. Your
application can override this timeout setting by calling the
returnWait parameter in the ttRepSyncSet procedure.

SEQUENCE
[Owner.]SequenceName

Define the sequence specified by
[Owner.]SequenceName as ELEMENT. See "Defining
replication elements" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

STORE FullStoreName Defines the attributes for a given data store. Data store
attributes include PORT, TIMEOUT and FAILTHRESHOLD.
The FullStoreName must be the data store specified in
the DataStore attribute of the DSN description.

SUBSCRIBER FullStoreName A data store that receives updates from the MASTER data
stores. The FullStoreName must be the data store
specified in the DataStore attribute of the DSN
description.

TABLE [Owner.]TableName Define the table specified by [Owner.]TableName as
ELEMENT. See "Defining replication elements" in Oracle
TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide for details.

TIMEOUT Seconds The amount of time a data store waits for a response from
another data store before resending the message. Default:
120 seconds.

Parameter Description

CREATE REPLICATION

5-88 Oracle TimesTen In-Memory Database SQL Reference

TRANSMIT {DURABLE |
NONDURABLE}

Specifies whether to flush the master log to disk before
sending a batch of committed transactions to the
subscribers.

TRANSMIT NONDURABLE specifies that records in the
master log are not to be flushed to disk before they are sent
to subscribers. This setting can only be used if the specified
ELEMENT is a DATASTORE. This is the default for RETURN
TWOSAFE transactions.

TRANSMIT DURABLE specifies that records are to be
flushed to disk before they are sent to subscribers. This is
the default for asynchronous and RETURN RECEIPT
transactions.

Note: TRANSMIT DURABLE has no effect on RETURN
TWOSAFE transactions.

Note: TRANSMIT DURABLE cannot be set for active
standby pairs.

See "Setting transmit durability on data store elements"
and "Replicating the entire master data store with
TRANSMIT NONDURABLE" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide
for more information.

TABLE DEFINITION CHECKING
{EXACT|RELAXED}

Specifies type of table definition checking that occurs on
the subscriber:

■ EXACT - The tables must be identical on master and
subscriber.

■ RELAXED - The tables must have the same key
definition, number of columns and column data types.

The default is EXACT.

ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Denotes the NetworkOperation clause. If specified,
allows you to control the network interface that a master
store uses for every outbound connection to each of its
subscriber stores.

Can be specified more than once.

For FullStoreName, ON "host" must be specified.

MASTERIP MasterHost |
SUBSCRIBERIP
SubscriberHost

MasterHost and SubscriberHost are the IP addresses
for the network interface on the master and subscriber
stores. Specify in dot notation or canonical format or in
colon notation for IPV6.

Clause can be specified more than once.

PRIORITY Priority Variable expressed as an integer from 1 to 99. Denotes the
priority of the IP address. Lower integral values have
higher priority. An error is returned if multiple addresses
with the same priority are specified. Controls the order in
which multiple IP addresses are used to establish peer
connections.

Required syntax of NetworkOperation clause. Follows
MASTERIP MasterHost | SUBSCRIBERIP
SubscriberHost clause.

Parameter Description

CREATE REPLICATION

SQL Statements 5-89

CHECK CONFLICTS

Syntax
The syntax for CHECK CONFLICTS is:

{NO CHECK |
CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN ColumnName
[UPDATE BY { SYSTEM | USER }]
[ON EXCEPTION { ROLLBACK [WORK] | NO ACTION }]
[{REPORT TO 'FileName'

[FORMAT { XML | STANDARD }] | NO REPORT
}]

}

Parameters
The CHECK CONFLICTS clause of the CREATE REPLICATION or ALTER
REPLICATION statement has the parameters:

Note: A CHECK CONFLICT clause can only be used for ELEMENTS
of type TABLE.

Parameter Description

CHECK CONFLICTS BY ROW
TIMESTAMP

Indicates that all update and uniqueness conflicts are
to be detected. Conflicts are resolved in the manner
specified by the ON EXCEPTION parameter.

It also detects delete conflicts with UPDATE
operations.

COLUMN ColumnName Indicates the column in the replicated table to be used
for timestamp comparison. The table is specified in
the ELEMENT description by TableName.

ColumnName is a nullable column of type BINARY(8)
used to store a timestamp that indicates when the row
was last updated. TimesTen rejects attempts to update
a row with a lower timestamp value than the stored
value. The specified ColumnName must exist in the
replicated table on both the master and subscriber
data stores.

NO CHECK Specify to suppress conflict resolution for a given
element.

UPDATE BY {SYSTEM | USER} Specifies whether the timestamp values are
maintained by TimesTen (SYSTEM) or the application
(USER). The replicated table in the master and
subscriber data stores must use the same UPDATE BY
specification. See "System timestamp column
maintenance" and "User timestamp column
maintenance" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide for more
information. The default is UPDATE BY SYSTEM.

CHECK CONFLICTS

5-90 Oracle TimesTen In-Memory Database SQL Reference

Description
■ The names of all data stores on the same host must be unique for each replication

scheme for each TimesTen instance.

■ Replication elements can only be updated (by normal application transactions)
through the MASTER data store. PROPAGATOR and SUBSCRIBER data stores are
read-only.

■ If you define a replication scheme that permits multiple data stores to update the
same table, see "Conflict Resolution and Failure Recovery" inOracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide for recommendations on
how to avoid conflicts when updating rows.

■ SELF is intended for replication schemes where all participating data stores are
local. Do not use SELF for a distributed replication scheme in a production
environment, where spelling out the hostname for each data store in a script
allows it to be used at each participating data store.

■ Each attribute for a given STORE may be specified only once, or not at all.

■ Specifying the PORT of a data store for one replication scheme specifies it for all
replication schemes. All other data store attributes are specific to the replication
scheme specified in the command.

■ For replication schemes, DataStoreName is always the prefix of the TimesTen
data store checkpoint file names. These are the files with the.ds0 and.ds1
suffixes that are saved on disk by checkpoint operations.

■ If a row with a default NOT INLINE VARCHAR value is replicated, the receiver
creates a copy of this value for each row instead of pointing to the default value if
and only if the default value of the receiving node is different from the sending
node.

■ To use timestamp comparison on replicated tables, you must specify a nullable
column of type BINARY(8) to hold the timestamp value. Define the timestamp
column when you create the table. You cannot add the timestamp column with the

ON EXCEPTION {ROLLBACK[WORK
|NO ACTION}

Specifies how to resolve a detected conflict. ROW
TIMESTAMP conflict detection has the resolution
options:

■ ROLLBACK [WORK]: Abort the transaction that
contains the conflicting action.

■ NO ACTION: Complete the transaction without
performing the conflicting action (UPDATE,
INSERT or DELETE).

Default is ON EXCEPTION ROLLBACK [WORK].

REPORT TO 'FileName' Specifies the file to log updates that fail the timestamp
comparison. FileName is a SQL character string that
cannot exceed 1,000 characters. (SQL character string
literals are single-quoted strings that may contain any
sequence of characters, including spaces.) The same
file can be used to log failed updates for multiple
tables.

[FORMAT {XML|STANDARD}] Optionally specifies the conflict report format for an
element. The default format is STANDARD.

NO REPORT Specify to suppress logging of failed timestamp
comparisons.

Parameter Description

CREATE REPLICATION

SQL Statements 5-91

ALTER TABLE statement. In addition, the timestamp column cannot be part of a
primary key or index.

■ If you specify the XML report format, two XML documents are generated:

– FileName.xml: This file contains the DTD for the report and the root node
for the report. It includes the document definition and the include directive.

– FileName.include: This file is included in FileName.xml and contains all
the actual conflicts.

– The FileName.include file can be truncated. Do not truncate the
FileName.xml file.

– For a complete description of the XML format, including examples of each
conflict, see "Reporting conflicts to an XML file" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide.

■ If you specify a report format for an element and then drop the element, the
corresponding report files are not deleted.

■ Use the CONFLICT REPORTING SUSPEND AT clause to specify a high water
mark threshold at which the reporting of conflict resolution is suspended. When
the number of conflicts per second exceeds the specified high water mark
threshold, conflict resolution reporting (if configured and reported by the report
file) and SNMP are suspended and an SNMP trap is emitted to indicate that it has
been suspended.

■ Use the CONFLICT REPORTING RESUME AT clause to specify a low water mark
threshold where the reporting of conflict resolution is resumed. When the rate of
conflict falls below the low water mark threshold, conflict resolution reporting is
resumed. A SNMP trap is emitted to indicate the resumption of conflict resolution.
This trap provides the number of unreported conflicts during the time when
conflict resolution was suspended.

■ The state of whether conflict reporting is suspended or not by a replication agent
does not persist across the local replication agent and the peer agent stop and
restart.

■ Do not use the CREATE REPLICATION statement to replicate dynamic read-only
cache groups asynchronously. Use the CREATE ACTIVE STANDBY PAIR
statement.

Examples
Replicate the contents of repl.tab from masterds to two subscribers,
subscriber1ds and subscriber2ds.

CREATE REPLICATION repl.twosubscribers
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER subscriber1ds ON "server2",

subscriber2ds ON "server3";

Replicate the entire masterds data store to the subscriber, subscriber1ds. The
FAILTHRESHOLD specifies that a maximum of 10 log files can accumulate on
masterds before it assumes subscriber1ds has failed.

CREATE REPLICATION repl.wholestore
ELEMENT e DATASTORE

MASTER masterds ON "server1"
SUBSCRIBER subscriber1ds ON "server2"

STORE masterds FAILTHRESHOLD 10;

CHECK CONFLICTS

5-92 Oracle TimesTen In-Memory Database SQL Reference

Bidirectionally replicate the entire westds and eastds data stores and enable the
RETURN TWOSAFE service.

CREATE REPLICATION repl.biwholestore
ELEMENT e1 DATASTORE

MASTER westds ON "westcoast"
SUBSCRIBER eastds ON "eastcoast"

RETURN TWOSAFE
ELEMENT e2 DATASTORE

MASTER eastds ON "eastcoast"
SUBSCRIBER westds ON "westcoast"

RETURN TWOSAFE;

Enable the return receipt service for select transaction updates to the subscriber1ds
subscriber.

CREATE REPLICATION repl.twosubscribers
ELEMENT e TABLE repl.tab

MASTER masterds ON "server1"
SUBSCRIBER subscriber1ds ON "server2"

RETURN RECEIPT BY REQUEST
SUBSCRIBER subscriber2ds ON "server3";

Replicate the contents of the customerswest table from the west data store to the
ROUNDUP data store and the customerseast table from the east data store. Enable
the return receipt service for all transactions.

CREATE REPLICATION r
ELEMENT west TABLE customerswest
MASTER west ON "serverwest"
SUBSCRIBER roundup ON "serverroundup"

RETURN RECEIPT
ELEMENT east TABLE customerseast
MASTER east ON "servereast"
SUBSCRIBER roundup ON "serverroundup"

RETURN RECEIPT;

Replicate the contents of the repl.tab table from the centralds data store to the
propds data store, which propagates the changes to the backup1ds and backup2ds
data stores.

CREATE REPLICATION repl.propagator
ELEMENT a TABLE repl.tab
MASTER centralds ON "finance"
SUBSCRIBER proprds ON "nethandler"

ELEMENT b TABLE repl.tab
PROPAGATOR proprds ON "nethandler"
SUBSCRIBER backup1ds ON "backupsystem1"

bakcup2ds ON "backupsystem2";

Bidirectionally replicate the contents of the repl.accounts table between the
eastds and westds data stores. Each data store is both a master and a subscriber for
the repl.accounts table.

Because the repl.accounts table can be updated on either the eastds or westds
data store, it includes a timestamp column (tstamp). The CHECK CONFLICTS clause
establishes automatic timestamp comparison to detect any update conflicts between
the two data stores. In the event of a comparison failure, the entire transaction that
includes an update with the older timestamp is rolled back (discarded).

CREATE REPLICATION

SQL Statements 5-93

CREATE REPLICATION repl.r1
ELEMENT elem_accounts_1 TABLE repl.accounts

CHECK CONFLICTS BY ROW TIMESTAMP
COLUMN tstamp
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK

MASTER westds ON "westcoast"
SUBSCRIBER eastds ON "eastcoast"

ELEMENT elem_accounts_2 TABLE repl.accounts
CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN tstamp
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK

MASTER eastds ON "eastcoast"
SUBSCRIBER westds ON "westcoast";

Replicate the contents of the repl.accounts table from the activeds data store to
the backupds data store, using the return twosafe service, and using TCP/IP port
40000 on activeds and TCP/IP port 40001 on backupds. The transactions on
activeds need to be committed whenever possible, so configure replication so that
the transaction is committed even after a replication timeout using LOCAL COMMIT
ACTION, and so that the return twosafe service is disabled when replication is
stopped. To avoid significant delays in the application if the connection to the
backupds data store is interrupted, configure the return service to be disabled after
five transactions have timed out, but also configure the return service to be re-enabled
when the backupds data store's replication agent responds in under 100 milliseconds.
Finally, the bandwidth between data stores is limited, so configure replication to
compress the data when it is replicated from the activeds data store.

CREATE REPLICATION repl.r
ELEMENT elem_accounts_1 TABLE repl.accounts

MASTER activeds ON "active"
SUBSCRIBER backupds ON "backup"

RETURN TWOSAFE
ELEMENT elem_accounts_2 TABLE repl.accounts

MASTER activeds ON "active"
SUBSCRIBER backupds ON "backup"

RETURN TWOSAFE
STORE activeds ON "active"

PORT 40000
LOCAL COMMIT ACTION COMMIT
RETURN SERVICES OFF WHEN REPLICATION STOPPED
DISABLE RETURN SUBSCRIBER 5
RESUME RETURN 100
COMPRESS TRAFFIC ON

STORE backupds ON "backup"
PORT 40001;

Illustrate conflict reporting suspend and conflict reporting resume clauses for table
level replication. Use these clauses for table level replication not data store replication.
Issue repschemes command to show that replication scheme is created.

Command> CREATE TABLE repl.accounts (tstamp BINARY (8) NOT NULL
PRIMARY KEY, tstamp1 BINARY (8));
Command> CREATE REPLICATION repl.r2
> ELEMENT elem_accounts_1 TABLE repl.accounts
> CHECK CONFLICTS BY ROW TIMESTAMP
> COLUMN tstamp1
> UPDATE BY SYSTEM
> ON EXCEPTION ROLLBACK WORK

CHECK CONFLICTS

5-94 Oracle TimesTen In-Memory Database SQL Reference

> MASTER westds ON "west1"
> SUBSCRIBER eastds ON "east1"
> ELEMENT elem_accounts_2 TABLE repl.accounts
> CHECK CONFLICTS BY ROW TIMESTAMP
> COLUMN tstamp1
> UPDATE BY SYSTEM
> ON EXCEPTION ROLLBACK WORK
> MASTER eastds ON "east1"
> SUBSCRIBER westds ON "west1"
> STORE westds
> CONFLICT REPORTING SUSPEND AT 20
> CONFLICT REPORTING RESUME AT 10;
Command> REPSCHEMES;

Replication Scheme REPL.R2:

 Element: ELEM_ACCOUNTS_1
 Type: Table REPL.ACCOUNTS
 Conflict Check Column: TSTAMP1
 Conflict Exception Action: Rollback Work
 Conflict Timestamp Update: System
 Conflict Report File: (none)
 Master Store: WESTDS on WEST1 Transmit Durable
 Subscriber Store: EASTDS on EAST1

 Element: ELEM_ACCOUNTS_2
 Type: Table REPL.ACCOUNTS
 Conflict Check Column: TSTAMP1
 Conflict Exception Action: Rollback Work
 Conflict Timestamp Update: System
 Conflict Report File: (none)
 Master Store: EASTDS on EAST1 Transmit Durable
 Subscriber Store: WESTDS on WEST1

 Store: EASTDS on EAST1
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

 Store: WESTDS on WEST1
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled
 Conflict Reporting Suspend: 20
 Conflict Reporting Resume: 10

1 replication scheme found.

Example of NetworkOperation clause with 2 MASTERIP and SUBSCRIBERIP
clauses:

CREATE REPLICATION r ELEMENT e DATASTORE
MASTER rep1 SUBSCRIBER rep2 RETURN RECEIPT
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2"

PRIORITY 1
MASTERIP "3.3.3.3" PRIORITY 2 SUBSCRIBERIP "4.4.4.4"

PRIORITY 2;

CREATE REPLICATION

SQL Statements 5-95

Example of NetworkOperation clause. Use the default sending interface but a
specific receiving network:

CREATE REPLICATION r
ELEMENT e DATASTORE
MASTER rep1 SUBSCRIBER rep2
ROUTE MASTER rep1 ON "machine1" SUBSCRIBER rep2 ON "machine2"
SUBSCRIBERIP "rep2nic2" PRIORITY 1;

Example of using the NetworkOperation clause with multiple subscribers:

CREATE REPLICATION r ELEMENT e DATASTORE
MASTER rep1 SUBSCRIBER rep2,rep3
ROUTE MASTER rep1 ON "machine1" SUBSCRIBER rep2 ON "machine2"
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2"

PRIORITY 1
ROUTE MASTER Rep1 ON "machine1" SUBSCRIBER Rep3 ON "machine2"
MASTERIP "3.3.3.3" PRIORITY 2 SUBSCRIBERIP "4.4.4.4";

See also
ALTER ACTIVE STANDBY PAIR
ALTER REPLICATION
CREATE ACTIVE STANDBY PAIR
DROP ACTIVE STANDBY PAIR
DROP REPLICATION

CREATE SEQUENCE

5-96 Oracle TimesTen In-Memory Database SQL Reference

CREATE SEQUENCE

The CREATE SEQUENCE statement creates a new sequence number generator that
can subsequently be used by multiple users to generate unique integers. Use the
CREATE SEQUENCE statement to define the initial value of the sequence, define the
increment value, the maximum or minimum value and determine if the sequence
continues to generate numbers after the minimum or maximum is reached.

Required privilege
CREATE SEQUENCE (if owner) or CREATE ANY SEQUENCE (if not owner)

SQL syntax
CREATE SEQUENCE [Owner.]SequenceName

[INCREMENT BY IncrementValue]
[MINVALUE MinimumValue]
[MAXVALUE MaximumValue]
[CYCLE]
[CACHE CacheValue]
[START WITH StartValue]

Parameters
The CREATE SEQUENCE statement has the parameters:

Parameter Description

SEQUENCE
[Owner.]SequenceName

Name of the sequence number generator.

INCREMENT BY
IncrementValue

The incremental value between consecutive numbers. This value
can be either a positive or negative integer. It cannot be 0. If the
value is positive, it is an ascending sequence. If the value is
negative, it is descending. The default value is 1. In a descending
sequence, the range starts from MAXVALUE to MINVALUE, and vice
versa for ascending sequence.

MINVALUE
MinimumValue

Specifies the minimum value for the sequence. The default
minimum value is 1.

MAXVALUE
MaximumValue

The largest possible value for an ascending sequence, or the
starting value for a descending sequence. The default maximum
value is (263) -1, which is the maximum of BIGINT.

CYCLE Indicates that the sequence number generator continues to
generate numbers after it reaches the maximum or minimum
value. By default, sequences do not cycle. Once the number
reaches the maximum value in the ascending sequence, the
sequence wraps around and generates numbers from its
minimum value. For a descending sequence, when the minimum
value is reached, the sequence number wraps around, beginning
from the maximum value. If CYCLE is not specified, the sequence
number generator stops generating numbers when the
maximum/minimum is reached and TimesTen returns an error.

CACHE CacheValue CACHE indicates the range of numbers that are cached each time.
When a restart occurs, unused cached numbers are lost. If you
specify a CacheValue of 1, then each use of the sequence results
in an update to the database. Larger cache values result in fewer
changes to the database and less overhead. The default is 20.

CREATE SEQUENCE

SQL Statements 5-97

Description
■ All parameters in the CREATE SEQUENCE statement must be integer values.

■ If you do not specify a value in the parameters, TimesTen defaults to an ascending
sequence that starts with 1, increments by 1, has the default maximum value and
does not cycle.

■ There is no ALTER SEQUENCE statement in TimesTen. To alter a sequence, use
the DROP SEQUENCE statement and then create a new sequence with the same
name. For example, to change the MINVALUE, drop the sequence and re-create it
with the same name and with the desired MINVALUE.

■ Do not create a sequence with the same name as a view or materialized view.

Incrementing SEQUENCE values with CURRVAL and NEXTVAL
To refer to the SEQUENCE values in a SQL statement, use CURRVAL and NEXTVAL.

■ CURRVAL returns the value of the last call to NEXTVAL if there is one in the
current session, otherwise it returns an error.

■ NEXTVAL increments the current sequence value by the specified increment and
returns the value for each row accessed.

■ NEXTVAL and CURRVAL can be used in:

– The SelectList of a SELECT statement, but not the SelectList of a
subquery

– The SelectList of an INSERT...SELECT statement

– The SET clause of an UPDATE statement

■ In a single SQL statement with multiple NEXTVAL references, TimesTen only
increments the sequence once, returning the same value for all occurrences of
NEXTVAL.

■ If a SQL statement contains both NEXTVAL and CURRVAL, NEXTVAL is
executed first. CURRVAL and NEXTVAL have the same value in that SQL
statement.

■ The current value of a sequence is a connection-specific value. If there are two
concurrent connections to the same data store, each connection has its own
CURRVAL of the same sequence set to its last NEXTVAL reference.

■ In the case of recovery, sequences are not rolled back. It is possible that the range
of values of a sequence can have gaps. Each sequence value is still unique.

■ When the maximum value is reached, SEQUENCE either wraps or issues an error
statement, depending on the value of the CYCLE option of the CREATE
SEQUENCE.

START WITH
StartValue

Specifies the first sequence number to be generated. Use this
clause to start an ascending sequence at a value that is greater
than the minimum value or to start a descending sequence at a
value less than the maximum. The StartValue must be greater
or equal MinimumValue and StartValue must be less than or
equal to MaximumValue.

Note: Sequences with the CYCLE attribute cannot be replicated.

Parameter Description

CREATE SEQUENCE

5-98 Oracle TimesTen In-Memory Database SQL Reference

Examples
Create a sequence.

CREATE SEQUENCE mysequence INCREMENT BY 1 MINVALUE 2
MAXVALUE 1000;

This example assumes that tab1 has 1 row in the table and that CYCLE is used:

CREATE SEQUENCE s1 MINVALUE 2 MAXVALUE 4 CYCLE;
SELECT s1.NEXTVAL FROM tab1;
/* Returns the value of 2; */
SELECT s1.NEXTVAL FROM tab1;
/* Returns the value of 3; */
SELECT s1.NEXTVAL FROM tab1;
/* Returns the value of 4; */

After the maximum value is reached, the cycle starts from the minimum value for an
ascending sequence.

SELECT s1.NEXTVAL FROM tab1;
/* Returns the value of 2; */

To create a sequence and generate a sequence number:

CREATE SEQUENCE seq INCREMENT BY 1;
INSERT INTO student VALUES (seq.NEXTVAL, 'Sally');

To use a sequence in an UPDATE SET clause:

UPDATE student SET studentno = seq.NEXTVAL WHERE name = 'Sally';

To use a sequence in a query:

SELECT seq.CURRVAL FROM student;

See also
DROP SEQUENCE

CREATE TABLE

SQL Statements 5-99

CREATE TABLE

The CREATE TABLE statement defines a table.

Required privilege
CREATE TABLE (if owner) or CREATE ANY TABLE (if not owner).

The owner of the created table must have the REFERENCES privilege on tables
referenced by the REFERENCE clause.

SQL syntax
The syntax for a persistent table is:

CREATE TABLE [Owner.]TableName
(

{{ColumnDefinition} [,...]
[PRIMARY KEY (ColumnName [,...]) |
[[CONSTRAINT ForeignKeyName]

FOREIGN KEY ([ColumnName] [,...])
REFERENCES RefTableName

[(ColumnName [,...])] [ON DELETE CASCADE]] [...]
}

)
[UNIQUE HASH ON (HashColumnName [,...])

PAGES = PrimaryPages]
[AGING {LRU|

USE ColumnName
LIFETIME Num1 {MINUTE[S] | HOUR[S] |DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

}[ON|OFF]
]
[AS SelectQuery]

The syntax for a temporary table is:

CREATE GLOBAL TEMPORARY TABLE [Owner.]TableName
(

{{ColumnDefinition} [,...]
[PRIMARY KEY (ColumnName [,...]) |
[[CONSTRAINT ForeignKeyName]

FOREIGN KEY ([ColumnName] [,...])
REFERENCES RefTableName

[(ColumnName [,...])] [ON DELETE CASCADE]] [...]
}

)
[UNIQUE HASH ON (HashColumnName [,...])

PAGES = PrimaryPages]
[ON COMMIT { DELETE | PRESERVE } ROWS]

Parameters
The CREATE TABLE statement has the parameters:

CREATE TABLE

5-100 Oracle TimesTen In-Memory Database SQL Reference

Parameter Description

[Owner.]TableName Name to be assigned to the new table. Two tables cannot have the
same owner name and table name.

If you do not specify the owner name, your login name becomes
the owner name for the new table. Owners of tables in TimesTen
are determined by the user ID settings or login names. Oracle
table owner names must always match TimesTen table owner
names.

For rules on creating names, see "Basic names" on page 2-1.

GLOBAL TEMPORARY Specifies that the table being created is a temporary table. A
temporary table is similar to a persistent table but it is effectively
materialized only when referenced in a connection.

A global temporary table definition is persistent and is visible to
all connections, but the table instance is local to each connection.
It is created when a command referencing the table is compiled
for a connection and dropped when the connection is
disconnected. All instances of the same temporary table have the
same name but they are identified by an additional connection ID
together with the table name. Global temporary tables are
allocated in temp space.

The contents of a temporary table cannot be shared between
connections. Each connection sees only its own content of the
table and compiled commands that reference temporary tables
are not shared among connections.

Temporary tables cannot be used as part of a cache group or a
replication scheme. Temporary tables are automatically excluded
when DATASTORE level replication is defined.

A cache group table cannot be defined as a temporary table.

Changes to temporary tables cannot be tracked with XLA.

Operations on temporary tables do generate log records. The
amount of log they generate is less than for permanent tables.

Truncate table is not supported with global temporary tables.

Local temporary tables are not supported.

No object privileges are needed to access global temporary tables.

Do not specify the AS SelectQuery clause with global
temporary tables.

ColumnDefinition An individual column in a table. Each table must have at least
one column. See "Column Definition" on page 5-104.

If you specify the AS SelectQuery clause, ColumnDefinition
is optional.

ColumnName Names of the columns that form the primary key for the table to
be created. Up to 16 columns can be specified for the primary key.
For a foreign key, the ColumnName is optional. If not specified for
a foreign key, the reference is to the parent table's primary key.

If you specify the AS SelectQuery clause, then you do not have
to specify the ColumnName. Do not specify the data type with the
AS SelectQuery clause.

PRIMARY KEY PRIMARY KEY may only be specified once in a table definition. It
provides a way of identifying one or more columns that, together,
form the primary key of the table. The contents of the primary
key have to be unique and NOT NULL. You cannot specify a
column as both UNIQUE and a single column PRIMARY KEY.

CONSTRAINT
ForeignKeyName

Specifies an optional user-defined name for a foreign key. If not
provided by the user, the system provides a default name.

CREATE TABLE

SQL Statements 5-101

FOREIGN KEY This specifies a foreign key constraint between the new table and
the referenced table identified by RefTableName. There are two
lists of columns specified in the foreign key constraint.

Columns in the first list are columns of the new table and are
called the referencing columns. Columns in the second list are
columns of the referenced table and are called referenced
columns. These two lists must match in data type, including
length, precision and scale. The referenced table must already
have a primary key or unique index on the referenced column.

The column name list of referenced columns is optional. If
omitted, the primary index of RefTableName is used.

The declaration of a foreign key creates a range index on the
referencing columns. The user cannot drop the referenced table or
its referenced index until the referencing table is dropped.

The foreign key constraint asserts that each row in the new table
must match a row in the referenced table such that the contents of
the referencing columns are equal to the contents of the
referenced columns. Any INSERT, DELETE or UPDATE
statements that violate the constraint return TimesTen error 3001.

TimesTen supports SQL-92 "NO ACTION" update and delete
rules and ON DELETE CASCADE. Foreign key constraints are
not deferrable.

A foreign key can be defined on a global temporary table, but it
can only reference a global temporary table. If a parent table is
defined with COMMIT DELETE, the child table must also have
the COMMIT DELETE attribute.

A foreign key cannot reference an active parent table. An active
parent table is one that has some instance materialized for a
connection.

If you specify the AS SelectQuery clause, you cannot define a
foreign key on the table you are creating.

[ON DELETE CASCADE] Enables the ON DELETE CASCADE referential action. If
specified, when rows containing referenced key values are
deleted from a parent table, rows in child tables with dependent
foreign key values are also deleted.

UNIQUE UNIQUE provides a way of identifying a column where each row
must contain a unique value.

UNIQUE HASH ON Hash index for the table. Only unique hash indexes are created.
This parameter is used for equality predicates. UNIQUE HASH ON
requires that a primary key be defined.

HashColumnName Column defined in the table that is to participate in the hash key
of this table. The columns specified in the hash index must be
identical to the columns in the primary key.

If you specify the AS SelectQuery clause, you must define
HashColumnName on the table you are creating.

PrimaryPages Specifies the expected number of pages in the table. This n-umber
affects the number of buckets that are allocated for the table's
hash index. The minimum is 1. If your estimate is too small,
performance is degraded.

[ON COMMIT
{DELETE|PRESERVE}
ROWS]

The optional statement specifies whether to delete or preserve
rows when a transaction that touches a global temporary table is
committed. If not specified, the rows of the temporary table are
deleted.

Parameter Description

CREATE TABLE

5-102 Oracle TimesTen In-Memory Database SQL Reference

[AGING LRU [ON|OFF]] If specified, defines the LRU aging policy for the table. The LRU
aging policy defines the type of aging (least recently used (LRU)),
the aging state (ON or OFF) and the LRU aging attributes.

Set the aging state to either ON or OFF. ON indicates that the
aging state is enabled and aging is done automatically. OFF
indicates that the aging state is disabled and aging is not done
automatically. In both cases, the aging policy is defined. The
default is ON.

LRU attributes are defined by calling the ttAgingLRUConfig
procedure. LRU attributes are not defined at the SQL level.

For more information about LRU aging, see "Implementing aging
in your tables" in Oracle TimesTen In-Memory Database Operations
Guide.

[AGING USE
ColumnName...[ON|OFF
]]

If specified, defines the time-based aging policy for the table. The
time-based aging policy defines the type of aging (time-based),
the aging state (ON or OFF) and the time-based aging attributes.

Set the aging state to either ON or OFF. ON indicates that the
aging state is enabled and aging is done automatically. OFF
indicates that the aging state is disabled and aging is not done
automatically. In both cases, the aging policy is defined. The
default is ON.

Time-based aging attributes are defined at the SQL level and are
specified by the LIFETIME and CYCLE clauses.

Specify ColumnName as the name of the column used for
time-based aging. Define the column as NOT NULL and of data
type TIMESTAMP or DATE. The value of this column is
subtracted from SYSDATE, truncated using the specified unit
(minute, hour, day) and then compared to the LIFETIME value. If
the result is greater than the LIFETIME value, then the row is a
candidate for aging.

The values of the column that you use for aging are updated by
your applications. If the value of this column is unknown for
some rows, and you do not want the rows to be aged, define the
column with a large default value (the column cannot be NULL).

You can define your aging column with a data type of
TT_TIMESTAMP or TT_DATE. If you choose data type
TT_DATE, then you must specify the LIFETIME unit as days.

If you specify the AS SelectQuery clause, you must define the
ColumnName on the table you are creating.

For more information about time-based aging, see "Implementing
aging in your tables" in Oracle TimesTen In-Memory Database
Operations Guide.

Parameter Description

CREATE TABLE

SQL Statements 5-103

LIFETIME Num1
{MINUTE[S]|HOUR[S]|
DAY[S]

LIFETIME is a time-based aging attribute and is a required clause.

Specify the LIFETIME clause after the AGING USE ColumnName
clause.

The LIFETIME clause specifies the minimum amount of time data
is kept in cache.

Specify Num1 as a positive integer constant to indicate the unit of
time expressed in minutes, hours or days that rows should be
kept in cache. Rows that exceed the LIFETIME value are aged out
(deleted from the table). If you define your aging column with
data type TT_DATE, then you must specify DAYS as the
LIFETIME unit.

The concept of time resolution is supported. If DAYS is specified
as the time resolution, then all rows whose timestamp belongs to
the same day are aged out at the same time. If HOURS is
specified as the time resolution, then all rows with timestamp
values within that hour are aged at the same time. A LIFETIME of
3 days is different than a LIFETIME of 72 hours (3*24) or a
LIFETIME of 432 minutes (3*24*60).

[CYCLE Num2 {MINUTE[S]
|HOUR[S] | DAY[S]}]

CYCLE is a time-based aging attribute and is optional. Specify the
CYCLE clause after the LIFETIME clause.

The CYCLE clause indicates how often the system should
examine rows to see if data exceeds the specified LIFETIME value
and should be aged out (deleted).

Specify Num2 as a positive integer constant.

If you do not specify the CYCLE clause, then the default value is 5
minutes. If you specify 0 for Num2, then aging is continuous and
the aging thread never sleeps.

If the aging state is OFF, then aging is not done automatically and
the CYCLE clause is ignored.

AS SelectQuery If specified, creates a new table from the contents of the result set
of the SelectQuery. The rows returned by SelectQuery are
inserted into the table.

Data types and data type lengths are derived from
SelectQuery.

SelectQuery is a valid SELECT statement that may or may not
contain a subquery.

Parameter Description

Column Definition

5-104 Oracle TimesTen In-Memory Database SQL Reference

Column Definition

SQL syntax
ColumnName ColumnDataType
[DEFAULT DefaultVal]
[[NOT] INLINE]
[PRIMARY KEY | UNIQUE |
NULL [UNIQUE] |
NOT NULL [PRIMARY KEY | UNIQUE]]

Parameters
The column definition has the parameters:

Parameter Description

ColumnName Name to be assigned to one of the columns in the new table. No two
columns in the table can be given the same name. You can define a
maximum of 255 columns in a table.

If you specify the AS SelectQuery clause, ColumnName is optional.
The number of column names must match the number of columns in
SelectQuery.

DEFAULT
DefaultVal

Indicates that if a value is not specified for the column in an INSERT
statement, the default value DefaultVal is inserted into the column.
The default value specified must have a compatible type with the
column's data type. A default value can be as long as the data type of
the associated column allows.

Legal data types for DefaultVal can be one of:

■ NULL

■ ConstantValue. See "Constants" on page 3-11

■ SYSDATE and GETDATE

■ INSERT

■ Expression. See "Expressions" on page 3-1

■ SYSTEM_USER

If the default value is one of the users, the column's data type must be
either CHAR or VARCHAR2 and the column's width must be at least
30 characters.

If you specify the AS SelectQuery clause, optionally, you can
specify the DEFAULT clause on the table you are creating.

ColumnDataType Type of data the column can contain. Some data types require that you
indicate a length. See Chapter 1, "Data Types" for the data types that
can be specified.

If you specify the AS SelectQuery clause, do not specify
ColumnDataType.

INLINE|NOT INLINE By default, variable-length columns whose declared column length is
greater than 128 bytes are stored out of line. Variable-length columns
whose declared column length is less than or equal to 128 bytes are
stored inline. The default behavior can be overridden during table
creation through the use of the INLINE and NOT INLINE keywords.

If you specify the AS SelectQuery clause, optionally, you can
specify the INLINE | NOT INLINE clause on the table you are
creating.

CREATE TABLE

SQL Statements 5-105

Description
■ TimesTen supports one hash index per table. A hash index is defined on the

primary key of a table.

■ By default, a range index is created to enforce the primary key. Use the UNIQUE
HASH clause to specify a hash index for the primary key.

– If your application performs range queries using a table's primary key, then
choose a range index for that table by omitting the UNIQUE HASH clause.

– If your application performs only exact match lookups on the primary key,
then a hash index may offer better response time and throughput. In such a
case, specify the UNIQUE HASH clause.

■ Use the ALTER TABLE statement to change the representation of the primary key
index for a table.

■ A hash index is created with a fixed number of buckets that remains constant for
the life of the table or until the hash index is resized using an ALTER TABLE
statement to change hash index size. Fewer buckets in the hash index result in
more hash collisions. More buckets reduce collisions but can waste memory. Hash
key comparison is a fast operation, so a small number of hash collisions does not
cause a performance problem for TimesTen.

The bucket count is derived as the ratio of the maximum table cardinality, derived
from the value of PAGES, to the value 20.To ensure that the hash index is sized
correctly, an application must indicate the expected size of the table. This is done
with the PAGES parameter. The PAGES parameter should be the expected number
of rows in the table, divided by 256. (Since 256 is the number of rows TimesTen
stores on each page, the value provided is the expected number of pages in the
table.) The application may specify a larger value for PAGES, and therefore fewer
rows per bucket on average, if memory use is not an overriding concern.

■ At most 16 columns are allowed in a hash key.

NULL Indicates that the column can contain NULL values.

If you specify the AS SelectQuery clause, optionally, you can
specify NULL on the table you are creating.

NOT NULL Indicates that the column cannot contain NULL values. If NOT NULL
is specified, any statement that attempts to place a NULL value in the
column is rejected.

If you specify the AS SelectQuery clause, optionally, you can
specify NOT NULL on the table you are creating.

UNIQUE A unique constraint placed on the column. No two rows in the table
may have the same value for this column. TimesTen creates a unique
range index to enforce uniqueness. This means that a column with a
unique constraint can use more memory and time during execution
than a column without the constraint. Cannot be used with PRIMARY
KEY.

If you specify the AS SelectQuery clause, optionally, you can
specify UNIQUE on the table you are creating.

PRIMARY KEY A unique NOT NULL constraint placed on the column. No two rows
in the table may have the same value for this column. Cannot be used
with UNIQUE.

If you specify the AS SelectQuery clause, optionally, you can
specify PRIMARY KEY on the table you are creating.

Parameter Description

Column Definition

5-106 Oracle TimesTen In-Memory Database SQL Reference

■ All columns participating in the primary key are NOT NULL.

■ A unique hash index can be specified only for the primary key.

■ A PRIMARY KEY that is specified in the ColumnDefinition can only be
specified for one column.

■ PRIMARY KEY cannot be specified in both the ColumnDefinition parameters
and CREATE TABLE parameters.

■ For both primary key and foreign key constraints, duplicate column names are not
allowed in the constraint column list.

■ You cannot create a table that has a foreign key referencing a cached table.

■ UNIQUE column constraint and default column values are not supported with
materialized views.

■ If ON DELETE CASCADE is specified on a foreign key constraint for a child table,
a user can delete rows from a parent table for which the user has the DELETE
privilege without requiring explicit DELETE privilege on the child table.

■ To change the ON DELETE CASCADE triggered action, drop then redefine the
foreign key constraint.

■ ON DELETE CASCADE is supported on detail tables of a materialized view. If
you have a materialized view defined over a child table, a deletion from the parent
table causes cascaded deletes in the child table. This, in turn, triggers changes in
the materialized view.

■ The total number of rows reported by the DELETE statement does not include
rows deleted from child tables as a result of the ON DELETE CASCADE action.

■ For ON DELETE CASCADE: Since different paths may lead from a parent table to
a child table, the following rule is enforced:

– Either all paths from a parent table to a child table are "delete" paths or all
paths from a parent table to a child table are "do not delete" paths. Specify ON
DELETE CASCADE on all child tables on the "delete" path.

– This rule does not apply to paths from one parent to different children or from
different parents to the same child.

■ For ON DELETE CASCADE, a second rule is also enforced:

– If a table is reached by a "delete" path, then all its children are also reached by
a "delete" path.

■ For ON DELETE CASCADE with replication, the following restrictions apply:

– The foreign keys specified with ON DELETE CASCADE must match between
the Master and subscriber for replicated tables. Checking is done at runtime. If
there is an error, the receiver thread stops working.

– All tables in the delete cascade tree have to be replicated if any table in the tree
is replicated. This restriction is checked when the replication scheme is created
or when a foreign key with ON DELETE CASCADE is added to one of the
replication tables. If an error is found, the operation is aborted. You may be
required to drop the replication scheme first before trying to change the
foreign key constraint.

– You must stop the replication agent before adding or dropping a foreign key
on a replicated table.

CREATE TABLE

SQL Statements 5-107

■ The data in a global temporary is private to the current connection and does not
need to be secured between users. Thus global temporary tables do not require
object privileges.

■ After you have defined an aging policy for the table, you cannot change the policy
from LRU to time-based or from time-based to LRU. You must first drop aging
and then alter the table to add a new aging policy.

■ The aging policy must be defined to change the aging state.

■ For the time-based aging policy, you cannot add or modify the aging column. This
is because you cannot add or modify a NOT NULL column.

■ LRU and time-based aging can be combined in one system. If you use only LRU
aging, the aging thread wakes up based on the cycle specified for the whole data
store. If you use only time-based aging, the aging thread wakes up based on an
optimal frequency. This frequency is determined by the values specified in the
CYCLE clause for all tables. If you use both LRU and time-based aging, then the
thread wakes up based on a combined consideration of both types.

■ The following rules determine if a row is accessed or referenced for LRU aging:

– Any rows used to build the result set of a SELECT statement.

– Any rows used to build the result set of an INSERT SELECT statement.

– Any rows that are about to be updated or deleted.

■ Compiled commands are marked invalid and need recompilation when you either
drop LRU aging from or add LRU aging to tables that are referenced in the
commands.

■ Call the ttAgingScheduleNow procedure to schedule the aging process
immediately regardless of the aging state.

■ Aging restrictions:

– LRU aging and time-based aging are not supported on detail tables of
materialized views.

– LRU aging and time-based aging are not supported on global temporary
tables.

– You cannot drop the column that is used for time-based aging.

– The aging policy and aging state must be the same in all sites of replication.

– Tables that are related by foreign keys must have the same aging policy.

– For LRU aging, if a child row is not a candidate for aging, neither this child
row nor its parent row are deleted. ON DELETE CASCADE settings are
ignored.

– For time-based aging, if a parent row is a candidate for aging, then all child
rows are deleted. ON DELETE CASCADE (whether specified or not) is
ignored.

■ If you specify the AS SelectQuery clause:

– Data types and data type lengths are derived from the SelectQuery. Do not
specify data types on the columns of the table you are creating.

– TimesTen defines on columns in the new table NOT NULL constraints that
were explicitly created on the corresponding columns of the selected table if
SelectQuery selects the column rather than an expression containing the
column.

Column Definition

5-108 Oracle TimesTen In-Memory Database SQL Reference

– NOT NULL constraints that were implicitly created by TimesTen on columns
of the selected table (for example, primary keys) are carried over to the new
table. You can override the NOT NULL constraint on the selected table by
defining the new column as NULL. For example: CREATE TABLE newtable
(newcol NULL) AS SELECT (col) FROM tab;

– NOT INLINE/INLINE attributes are carried over to the new table.

– Unique keys, foreign keys, indexes and column default values are not carried
over to the new table.

– If all expressions in SelectQuery are columns, rather than expressions, then
you can omit the columns from the table you are creating. In this case, the
name of the columns are the same as the columns in SelectQuery. If the
SelectQuery contains an expression rather than a simple column reference,
either specify a column alias or name the column in the CREATE TABLE
statement.

– Do not specify foreign keys on the table you are creating.

– Do not specify the SELECT FOR UPDATE clause in SelectQuery.

– SelectQuery cannot contain set operators UNION, MINUS, INTERSECT.

– Global temporary tables are not supported.

Examples
A range index is created on partnumber because it is the primary key.

Command> CREATE TABLE price
> (partnumber INTEGER NOT NULL PRIMARY KEY,
> vendornumber INTEGER NOT NULL,
> vendpartnum CHAR(20) NOT NULL,
> unitprice DECIMAL(10,2),
> deliverydays SMALLINT,
> discountqty SMALLINT);
Command> INDEXES price;
Indexes on table SAMPLEUSER.PRICE:
 PRICE: unique range index on columns:

PARTNUMBER
1 index found.
1 table found.

A hash index is created on column clubname, the primary key.

CREATE TABLE recreation.clubs
(clubname CHAR(15) NOT NULL PRIMARY KEY,
clubphone SMALLINT,
activity CHAR(18))
UNIQUE HASH ON (clubname) PAGES = 30;

A range index is created on the two columns membername and club because together
they form the primary key.

Command> CREATE TABLE recreation.members
> (membername CHAR(20) NOT NULL,
> club CHAR(15) NOT NULL,
> memberphone SMALLINT,
> PRIMARY KEY (membername, club));
Command> INDEXES recreation.members;
Indexes on table RECREATION.MEMBERS:
MEMBERS: unique range index on columns:

CREATE TABLE

SQL Statements 5-109

MEMBERNAME
CLUB

1 index found.
1 table found.

No hash index is created on the table recreation.events.

CREATE TABLE recreation.events
(sponsorclub CHAR(15),
event CHAR(30),
coordinator CHAR(20),
results VARBINARY(10000));

A hash index is created on the column vendornumber.

CREATE TABLE purchasing.vendors
(vendornumber INTEGER NOT NULL PRIMARY KEY,
vendorname CHAR(30) NOT NULL,
contactname CHAR(30),
phonenumber CHAR(15),
vendorstreet CHAR(30) NOT NULL,
vendorcity CHAR(20) NOT NULL,
vendorstate CHAR(2) NOT NULL,
vendorzipcode CHAR(10) NOT NULL,
vendorremarks VARCHAR(60))
UNIQUE HASH ON (vendornumber) PAGES = 101;

A hash index is created on the columns membername and club because together they
form the primary key.

CREATE TABLE recreation.members
(membername CHAR(20) NOT NULL,

club CHAR(15) NOT NULL,
memberphone SMALLINT,
PRIMARY KEY (membername, club))

UNIQUE HASH ON (membername, club) PAGES = 100;

A hash index is created on the columns firstname and lastname because together
they form the primary key in the table authors. A foreign key is created on the
columns authorfirstname and authorlastname in the table books that
references the primary key in the table authors.

CREATE TABLE authors
(firstname VARCHAR(255) NOT NULL,

lastname VARCHAR(255) NOT NULL,
description VARCHAR(2000),
PRIMARY KEY (firstname, lastname))

UNIQUE HASH ON (firstname, lastname) PAGES=20;
CREATE TABLE books

(title VARCHAR(100),
authorfirstname VARCHAR(255),
authorlastname VARCHAR(255),
price DECIMAL(5,2),
FOREIGN KEY (authorfirstname, authorlastname)
REFERENCES authors(firstname, lastname));

The following statement overrides the default character of VARCHAR columns and
creates a table where one VARCHAR (10) column is NOT INLINE and one VARCHAR
(144) is INLINE:

CREATE TABLE t1
(c1 VARCHAR(10) NOT INLINE NOT NULL,

Column Definition

5-110 Oracle TimesTen In-Memory Database SQL Reference

c2 VARCHAR(144) INLINE NOT NULL);

The following statement creates a table with a UNIQUE column for book titles:

CREATE TABLE books
(title VARCHAR(100) UNIQUE,

authorfirstname VARCHAR(255),
authorlastname VARCHAR(255),
price DECIMAL(5,2),
FOREIGN KEY (authorfirstname, authorlastname)
REFERENCES authors(firstname, lastname));

The following statement creates a table with a default value of 1 on column x1 and a
default value of SYSDATE on column d:

CREATE TABLE t1
(x1 INT DEFAULT 1, d TIMESTAMP DEFAULT SYSDATE);

This example creates the rangex table and defines col1 as the primary key. A range
index is created by default.

Command> CREATE TABLE rangex (col1 TT_INTEGER PRIMARY KEY);
Command> INDEXES rangex;
Indexes on table SAMPLEUSER.RANGEX:
RANGEX: unique range index on columns:
COL1

1 index found.
1 table found.

The following statement illustrates the use of the ON DELETE CASCADE clause for
parent/child tables of the HR schema. Tables with foreign keys have been altered to
enable ON DELETE CASCADE.

ALTER TABLE countries
ADD CONSTRAINT countr_reg_fk

FOREIGN KEY (region_id)
REFERENCES regions(region_id) ON DELETE CASCADE;

ALTER TABLE locations
ADD CONSTRAINT loc_c_id_fk

FOREIGN KEY (country_id)
REFERENCES countries(country_id) ON DELETE CASCADE;

ALTER TABLE departments
ADD CONSTRAINT dept_loc_fk

FOREIGN KEY (location_id)
REFERENCES locations (location_id) ON DELETE CASCADE;

ALTER TABLE employees
ADD CONSTRAINT emp_dept_fk

FOREIGN KEY (department_id)
REFERENCES departments ON DELETE CASCADE;

ALTER TABLE employees
ADD CONSTRAINT emp_job_fk

FOREIGN KEY (job_id)
REFERENCES jobs (job_id);

ALTER TABLE job_history
ADD CONSTRAINT jhist_job_fk

FOREIGN KEY (job_id)
REFERENCES jobs;

ALTER TABLE job_history
ADD CONSTRAINT jhist_emp_fk

FOREIGN KEY (employee_id)
REFERENCES employees ON DELETE CASCADE;

CREATE TABLE

SQL Statements 5-111

ALTER TABLE job_history
ADD CONSTRAINT jhist_dept_fk

FOREIGN KEY (department_id)
REFERENCES departments ON DELETE CASCADE;

;

This example shows how time resolution works with aging.

If lifetime is 3 days (resolution is in days):

■ If (SYSDATE - ColumnValue) <= 3, do not age.

■ If (SYSDATE - ColumnValue) > 3, then the row is a candidate for aging.

■ If (SYSDATE - ColumnValue) = 3 days, 22 hours. The row is not aged out if you
specified a lifetime of 3 days. The row would be aged out if you had specified a
lifetime of 72 hours.

This example creates a table with LRU aging. Aging state is ON by default.

CREATE TABLE agingdemo
(agingid NUMBER NOT NULL PRIMARY KEY
,name VARCHAR2 (20)
)
AGING LRU;

Command> DESCRIBE agingdemo;
Table USER.AGINGDEMO:
Columns:

*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGING LRU ON

1 table found.
(primary key columns are indicated with *)

This example creates a table with time-based aging. Lifetime is 3 days. Cycle is not
specified, so the default is 5 minutes. Aging state is OFF.

CREATE TABLE agingdemo2
(agingid NUMBER NOT NULL PRIMARY KEY
,name VARCHAR2 (20)
,agingcolumn TIMESTAMP NOT NULL
)
AGING USE agingcolumn LIFETIME 3 DAYS OFF;

Command> DESCRIBE agingdemo2;
Table USER.AGINGDEMO2:
Columns:

*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 3 days cycle 5 minutes off
1 table found.
(primary key columns are indicated with *)

This example generates an error message. It illustrates that after you create an aging
policy, you cannot change it. You must drop aging and redefine aging.

CREATE TABLE agingdemo2
(agingid NUMBER NOT NULL PRIMARY KEY
,name VARCHAR2 (20)
,agingcolumn TIMESTAMP NOT NULL
)
AGING USE agingcolumn LIFETIME 3 DAYS OFF;

ALTER TABLE agingdemo2

Column Definition

5-112 Oracle TimesTen In-Memory Database SQL Reference

ADD AGING LRU;
 2980: Cannot add aging policy to a table with an existing aging policy. Have to
drop the old aging first
The command failed.
DROP aging on the table and redefine with LRU aging.
ALTER TABLE agingdemo2

DROP AGING;
ALTER TABLE agingdemo2

ADD AGING LRU;
Command> DESCRIBE agingdemo2;
Table USER.AGINGDEMO2:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging lru on
1 table found.
(primary key columns are indicated with *)

Attempt to create a table with time-based aging. Define aging column with data type
TT_DATE and LIFETIME 3 hours. An error is generated because the LIFETIME unit
must be expressed as DAYS.

Command> CREATE TABLE aging1 (col1 TT_INTEGER PRIMARY KEY,
col2 TT_DATE NOT NULL) AGING USE col2 LIFETIME 3 HOURS;

 2977: Only DAY lifetime unit is allowed with a TT_DATE column
The command failed.

Use AS SelectQuery clause to create the table emp. Select last_name from the
employees table where employee_id between 100 and 105. You see 6 rows inserted
into emp. First issue the SELECT statement to see rows that should be returned.

Command> SELECT last_name FROM employees WHERE employee_id BETWEEN 100 AND 105;
< King >
< Kochhar >
< De Haan >
< Hunold >
< Ernst >
< Austin >
6 rows found.
Command> CREATE TABLE emp AS SELECT employee_id FROM employees
>WHERE employee_id BETWEEN 100 AND 105;
6 rows inserted.
Command> SELECT * FROM emp;
< King >
< Kochhar >
< De Haan >
< Hunold >
< Ernst >
< Austin >
6 rows found.

Use AS SelectQuery to create table totalsal. Sum salary and insert result into
totalsalary. Define alias s for SelectQuery expression.

Command> CREATE TABLE totalsal AS SELECT SUM (salary) s FROM employees;
1 row inserted.
Command> SELECT * FROM totalsal;
< 691400 >
1 row found.

CREATE TABLE

SQL Statements 5-113

Use AS SelectQuery to create table defined with column commission_pct. Set
default to .3. First describe table employees to show that column commission_pct
is of type NUMBER (2,2). For table c_pct, column commission_pct inherits type
NUMBER (2,2) from column commission_pct of employees table.

Command> DESCRIBE employees;
Table SAMPLEUSER.EMPLOYEES:
Columns:
*EMPLOYEE_ID NUMBER (6) NOT NULL
FIRST_NAME VARCHAR2 (20) INLINE
LAST_NAME VARCHAR2 (25) INLINE NOT NULL
EMAIL VARCHAR2 (25) INLINE UNIQUE NOT NULL
PHONE_NUMBER VARCHAR2 (20) INLINE
HIRE_DATE DATE NOT NULL
JOB_ID VARCHAR2 (10) INLINE NOT NULL
SALARY NUMBER (8,2)
COMMISSION_PCT NUMBER (2,2)
MANAGER_ID NUMBER (6)
DEPARTMENT_ID NUMBER (4)

1 table found.
(primary key columns are indicated with *)
Command> CREATE TABLE c_pct (commission_pct DEFAULT .3) AS SELECT

commission_pct FROM employees;
107 rows inserted.
Command> DESCRIBE c_pct;

Table SAMPLEUSER.C_PCT:
Columns:
COMMISSION_PCT NUMBER (2,2) DEFAULT .3

1 table found.
(primary key columns are indicated with *)

See also
ALTER TABLE
DROP TABLE
TRUNCATE TABLE
UPDATE

CREATE USER

5-114 Oracle TimesTen In-Memory Database SQL Reference

CREATE USER

The CREATE USER statement creates a user of a TimesTen database.

Required privilege
ADMIN

SQL syntax
CREATE USER user IDENTIFIED BY {password | "password"}
CREATE USER user IDENTIFIED EXTERNALLY

Parameters
The CREATE USER statement has the parameters:

Description
■ Database users can be internal or external.

– Internal users are defined for a TimesTen database.

– External users are defined by an external authority such as the operating
system. External users cannot be assigned a TimesTen password.

■ Passwords are case-sensitive.

■ When a user is created, the user has the privileges granted to PUBLIC and no
additional privileges.

■ You cannot create a user across a client/server connection. You must use a direct
connection when creating a user.

■ In TimesTen, user brad is the same as user "brad". In both cases, the name of the
user is created as BRAD.

■ User names are TT_CHAR data type.

Examples
To create the internal user terry with the password "secret", use:

CREATE USER terry IDENTIFIED BY "secret";
User created.

Parameter Description

user Name of the user that is being added to the database.

IDENTIFIED Identification clause.

BY {password
|"password"}

Internal users must be given a TimesTen password. To perform
database operations using an internal user name, the user must
supply this password.

EXTERNALLY Identifies the operating system user to the TimesTen database.
To perform database operations as an external user, the process
needs a TimesTen external user name that matches the user
name authenticated by the operating system or network. A
password is not required by TimesTen because the user has
been authenticated by the operating system at login time.

CREATE USER

SQL Statements 5-115

Verify that user terry has been created:

Command> SELECT * FROM sys.all_users WHERE username='TERRY';
< TERRY, 11, 2009-05-12 10:28:04.610353 >
1 row found.

To identify the external user pat to the TimesTen database, use:

CREATE USER pat IDENTIFIED EXTERNALLY;
User created.

See also
ALTER USER
DROP USER
GRANT
REVOKE

CREATE VIEW

5-116 Oracle TimesTen In-Memory Database SQL Reference

CREATE VIEW

The CREATE VIEW statement creates a view of the tables specified in the
SelectQuery clause. A view is a logical table that is based on one or more detail
tables. The view itself contains no data. It is sometimes called a nonmaterialized view to
distinguish it from a materialized view, which does contain data that has already been
calculated from detail tables.

Required privilege
CREATE VIEW for the view owner or CREATE ANY VIEW for another user’s view
and

SELECT on referenced tables and views

SQL syntax
CREATE VIEW ViewName AS SelectQuery

Parameters
The CREATE VIEW statement has the parameters:

Restrictions on the select query
There are several restrictions on the query that is used to define the view.

■ A SELECT * query in a view definition is expanded when the view is created. Any
columns added after a view is created do not affect the view.

■ Do not create a view with the same name as a sequence.

■ The following cannot be used in a SELECT statement that is used to create a view:

– DISTINCT

– FIRST

– ORDER BY

– Arguments

– Temporary tables

■ Each expression in the select list must have a unique name. A name of a simple
column expression would be that column's name unless a column alias is defined.
ROWID is considered an expression and needs an alias.

■ No SELECT FOR UPDATE or SELECT FOR INSERT statements can be used to
create a view.

■ Certain TimesTen query restrictions are not checked when a nonmaterialized view
is created. Views that violate those restrictions may be allowed to be created, but
an error is returned when the view is referenced later in an executed statement.

Parameter Description

ViewName Name assigned to the new view.

SelectQuery Selects column from the detail table(s) to be used in the view. Can also
create indexes on the view.

CREATE VIEW

SQL Statements 5-117

Restrictions on the select query
■ When a view is referenced in the FROM clause of a SELECT statement, its name is

replaced by its definition as a derived table at parsing time. If it is not possible to
merge all clauses of a view to the same clause in the original select query to form a
legal query without the derived table, the content of this derived table is
materialized. For example, if both the view and the referencing select specify
aggregates, the view is materialized before its result can be joined with other tables
of the select.

■ A view cannot be dropped with a DROP TABLE statement. You must use the
DROP [MATERIALIZED] VIEW statement.

■ A view cannot be altered with an ALTER TABLE statement.

■ Referencing a view can fail due to dropped or altered detail tables.

Examples
Create a nonmaterialized view from the employees table.

Command> CREATE VIEW v1 AS SELECT employee_id, email FROM employees;
Command> SELECT FIRST 5 * FROM v1;
< 100, SKING >
< 101, NKOCHHAR >
< 102, LDEHAAN >
< 103, AHUNOLD >
< 104, BERNST >
5 rows found.

Create a nonmaterialized view from an aggregate query on the table t1.

CREATE VIEW v1 (max1) AS SELECT MAX(x1) FROM t1;

See also
CREATE MATERIALIZED VIEW
CREATE TABLE
DROP [MATERIALIZED] VIEW

DELETE

5-118 Oracle TimesTen In-Memory Database SQL Reference

DELETE

The DELETE statement deletes rows from a table.

Required privilege
No privilege is required for the table owner.

DELETE on the table for another user’s table.

SQL syntax
DELETE [FIRST NumRows] FROM [Owner.]TableName[CorrelationName]
[WHERE SearchCondition]
[RETURNING|RETURN Expression[,...]INTO DataItem[,...]]

Parameters
The DELETE statement has the parameters:

Description
■ If all the rows of a table are deleted, the table is empty but continues to exist until

you issue a DROP TABLE statement.

■ The DELETE operation fails if it violates any foreign key constraint. See "CREATE
TABLE" on page 5-99 for a description of the foreign key constraint.

■ The total number of rows reported by the DELETE statement does not include
rows deleted from child tables as a result of the ON DELETE CASCADE action.

■ If ON DELETE CASCADE is specified on a foreign key constraint for a child table,
a user can delete rows from a parent table for which the user has the DELETE
privilege without requiring explicit DELETE privilege on the child table.

Parameter Description

FIRST NumRows Specifies the number of rows to delete. FIRST NumRows is not
supported in subquery statements. NumRows must be either a positive
INTEGER or a dynamic parameter placeholder. The syntax for a
dynamic parameter placeholder is either ? or :DynamicParameter.
The value of the dynamic parameter is supplied when the statement is
executed.

[Owner.]TableName
[CorrelationName]

Designates a table from which any rows satisfying the search
condition are to be deleted.

[Owner.]TableName identifies a table to be deleted.

CorrelationName specifies a synonym for the immediately
preceding table. When accessing columns of that table, use the
correlation name instead of the actual table name within the DELETE
statement. The correlation name must conform to the syntax rules for
a basic name. See "Basic names" on page 2-1.

SearchCondition Specifies which rows are to be deleted. If no rows satisfy the search
condition, the table is not changed. If the WHERE clause is omitted, all
rows are deleted. The search condition can contain a subquery.

Expression Valid expression syntax. See Chapter 3, "Expressions".

DataItem Host variable or PL/SQL variable that stores the retrieved
Expression value.

DELETE

SQL Statements 5-119

■ Restrictions on the RETURNING clause:

– Each Expression must be a simple expression. Aggregate functions are not
supported.

– You cannot return a sequence number into an OUT parameter.

– ROWNUM and subqueries cannot be used in the RETURNING clause.

– Parameters in the RETURNING clause cannot be duplicated anywhere in the
DELETE statement.

– Using the RETURNING clause to return multiple rows requires PL/SQL
BULK COLLECT functionality. See Oracle TimesTen In-Memory Database
PL/SQL Developer's Guide.

– In PL/SQL, you cannot use a RETURNING clause with a WHERE CURRENT
operation.

Examples
Rows for orders whose quantity is less than 50 are deleted.

DELETE FROM purchasing.orderitems
WHERE quantity < 50;

The following query deletes all the duplicate orders assuming that id is not a primary
key:

DELETE FROM orders a
WHERE EXISTS (SELECT 1 FROM orders b
WHERE a.id = b.id and a.rowid < b.rowid);

The following sequence of statements causes a foreign key violation.

CREATE TABLE master (name CHAR(30), id CHAR(4) NOT NULL PRIMARY KEY);
CREATE TABLE details
 (masterid CHAR(4),description VARCHAR(200),
 FOREIGN KEY (masterid) REFERENCES master(id));
INSERT INTO master('Elephant', '0001');
INSERT INTO details('0001', 'A VERY BIG ANIMAL');
DELETE FROM master WHERE id = '0001';

If you attempt to delete a "busy" table, an error results. In this example, t1 is a "busy"
table that is a parent table with foreign key constraints based on it.

CREATE TABLE t1 (a INT NOT NULL, b INT NOT NULL,
PRIMARY KEY (a));

CREATE TABLE t2 (c INT NOT NULL,
FOREIGN KEY (c) REFERENCES t1(a));

INSERT INTO t1 VALUES (1,1);
INSERT INTO t2 VALUES (1);
DELETE FROM t1;

An error is returned:

SQL ERROR (3001): Foreign key violation [TTFOREIGN_0] a row in child table T2 has
a parent in the delete range.

Delete an employee from employees. Declare empid and name as variables with the
same data types as employee_id and last_name. Delete the row, returning
employee_id and last_name into the variables. Verify that the correct row was
deleted.

DELETE

5-120 Oracle TimesTen In-Memory Database SQL Reference

Command> VARIABLE empid NUMBER(6) NOT NULL;
Command> VARIABLE name VARCHAR2(25) INLINE NOT NULL;
Command> DELETE FROM employees WHERE last_name='Ernst'
 > RETURNING employee_id, last_name INTO :empid,:name;
1 row deleted.
Command> PRINT empid name;
EMPID : 104
NAME : Ernst

DROP ACTIVE STANDBY PAIR

SQL Statements 5-121

DROP ACTIVE STANDBY PAIR

This statement drops an active standby pair replication scheme.

Required privilege
ADMIN

SQL syntax
DROP ACTIVE STANDBY PAIR

Parameters
DROP ACTIVE STANDBY PAIR has no parameters.

Description
The active standby pair is dropped, but all objects such as tables, cache groups, and
materialized views still exist on the node on which the statement was issued.

See also
ALTER ACTIVE STANDBY PAIR
CREATE ACTIVE STANDBY PAIR

DROP CACHE GROUP

5-122 Oracle TimesTen In-Memory Database SQL Reference

DROP CACHE GROUP

The DROP CACHE GROUP statement drops the table associated with the cache
group, and removes the cache group definition from the CACHE_GROUP system
table.

Required privilege
No privilege is required for the cache group owner or DROP ANY CACHE GROUP if
not the cache group owner and

DROP ANY TABLE if at least one table in the cache group is not owned by the current
user.

SQL syntax
DROP CACHE GROUP [Owner.]GroupName

Parameters
The DROP CACHE GROUP statement has the parameter:

Description
■ If you attempt to delete a cache group table that is in use, TimesTen returns an

error.

■ ASYNCHRONOUS WRITETHROUGH cache groups cannot be dropped while the
replication agent is running.

■ Automatically installed Oracle objects for read-only cache groups and cache
groups with the AUTOREFRESH attribute are uninstalled by the cache agent. If
the cache agent is not running during the DROP CACHE GROUP operation, the
Oracle objects are uninstalled on the next startup of the cache agent.

■ If you issue a DROP CACHE GROUP statement, and there is an autorefresh
operation currently running, then:

– If LockWait interval is 0, the DROP CACHE GROUP statement fails with a
lock timeout error.

– If LockWait interval is non-zero, then the current autorefresh transaction is
preempted (rolled back), and the DROP statement continues. This affects all
cache groups with the same autorefresh interval.

Examples
DROP CACHE GROUP westerncustomers;

See also
ALTER CACHE GROUP
CREATE CACHE GROUP

Parameter Description

[Owner.]GroupName Name of the cache group to be deleted.

DROP FUNCTION

SQL Statements 5-123

DROP FUNCTION

The DROP FUNCTION statement removes a standalone stored function from the
database. Do not use this statement to remove a function that is part of a package.

Required privilege
No privilege is required for the function owner.

DROP ANY PROCEDURE for another user’s function.

SQL syntax
DROP FUNCTION [Owner.]FunctionName

Parameters
The DROP FUNCTION statement has the parameter:

Description
■ When you drop a function, TimesTen invalidates objects that depend on the

dropped function. If you subsequently reference one of these objects, TimesTen
attempts to recompile the object and returns an error message if you have not
re-created the dropped function.

■ Do not use this statement to remove a function that is part of a package. Either
drop the package or redefine the package without the function using the CREATE
PACKAGE statement with the OR REPLACE clause

■ To use the DROP FUNCTION statement, you must have PL/SQL enabled in your
database. If you do not have PL/SQL enabled in your database, an error is
thrown.

Examples
The following statement drops the function myfunc and invalidates all objects that
depend on myfunc:

Command> DROP FUNCTION myfunc;

Function dropped.

If PL/SQL is not enabled in your database, TimesTen returns an error:

Command> DROP FUNCTION myfunc;
 8501: PL/SQL feature not installed in this TimesTen database
The command failed.

See also
CREATE FUNCTION

Parameter Description

[Owner.]FunctionName Name of the function to be dropped.

DROP INDEX

5-124 Oracle TimesTen In-Memory Database SQL Reference

DROP INDEX

The DROP INDEX statement deletes the specified index.

Required privilege
No privilege is required for the index owner.

DROP ANY INDEX for another user’s index.

SQL syntax
DROP INDEX [Owner.]IndexName [FROM [Owner.]TableName]

Parameters
The DROP INDEX statement has the parameters:

Description
■ If you attempt to drop a "busy" index—an index that is in use or that enforces a

foreign key—an error results. To drop a foreign key and the index associated with
it, use the ALTER TABLE statement.

■ If an index is created through a UNIQUE column constraint, it can only be
dropped by dropping the constraint with an ALTER TABLE DROP UNIQUE
statement. See "CREATE TABLE" on page 5-99 for more information about the
UNIQUE column constraint.

■ If a DROP INDEX operation is or was active in an uncommitted transaction, other
transactions doing DML operations that do not access that index are blocked.

■ If an index is dropped, any prepared statement that uses the index is prepared
again automatically the next time the statement is executed.

■ If no table name is specified, the index name must be unique for the specified or
implicit owner. The implicit owner, in the absence of a specified table or owner, is
the current user running the program.

■ If no index owner is specified and a table is specified, the default owner is the
table owner.

■ If a table is specified and no owner is specified for it, the default table owner is the
current user running the program.

■ The table and index owners must be the same.

■ An index on a temporary table cannot be dropped by a connection if some other
connection has an instance of the table that is not empty.

■ If the index is used as the unique index for replication, you must drop the
replication scheme before you can drop the index.

Parameter Description

[Owner.]IndexName Name of the index to be dropped. It may include the name of the
owner of the table that has the index.

[Owner.]TableName Name of the table upon which the index was created.

DROP INDEX

SQL Statements 5-125

Examples
Drop index partsorderedindex which is defined on table orderitems using one
of the following:

DROP INDEX partsorderedindex
FROM purchasing.orderitems;

or

DROP INDEX purchasing.partsorderedindex;

See also
CREATE INDEX

DROP [MATERIALIZED] VIEW

5-126 Oracle TimesTen In-Memory Database SQL Reference

DROP [MATERIALIZED] VIEW

The DROP [MATERIALIZED] VIEW statement deletes the specified view, including
any hash indexes and any range indexes associated with it.

Required privilege
■ View owner or DROP ANY [MATERIALIZED] VIEW (if not owner) and

■ Table owner or DROP ANY TABLE (if not owner) and

■ Index owner or DROP ANY INDEX (if not owner) if there is an index on the view

SQL syntax
DROP [MATERIALIZED] VIEW ViewName

Parameters
The DROP VIEW statement has the parameters:

Description
When you perform a DROP VIEW operation on a materialized view, the detail tables
are updated and locked. An error may result if the detail table was already locked by
another transaction.

Examples
The following statement drops the custorder view.

DROP VIEW custorder;

See also
CREATE MATERIALIZED VIEW
CREATE VIEW

Parameter Description

MATERIALIZED Specifies that the view is materialized.

ViewName Identifies the view to be dropped.

DROP MATERIALIZED VIEW LOG

SQL Statements 5-127

DROP MATERIALIZED VIEW LOG

The DROP MATERIALIZED VIEW LOG statement drops the materialized view log for
a detail table.

Required privilege
No privilege is required for the table owner.

DROP ANY TABLE for another user’s table.

SQL syntax
DROP MATERIALIZED VIEW LOG ON TableName

Parameters

Description
This statement drops the materialized view log for the specified detail table. The
materialized view log cannot be dropped if there is an asynchronous materialized
view that depends on the log for refreshing.

Examples
DROP MATERIALIZED VIEW LOG ON employees;

See also
CREATE MATERIALIZED VIEW LOG
CREATE MATERIALIZED VIEW
DROP [MATERIALIZED] VIEW

Parameter Description

TableName Name of the detail table for which the materialized view log was
created.

DROP PACKAGE [BODY]

5-128 Oracle TimesTen In-Memory Database SQL Reference

DROP PACKAGE [BODY]

The DROP PACKAGE statement removes a stored package from the database. Both
the specification and the body are dropped. DROP PACKAGE BODY removes only the
body of the package.

Required privilege
No privilege is required for the package owner.

DROP ANY PROCEDURE for another user’s package.

SQL syntax
DROP PACKAGE [BODY] [Owner.]PackageName

Parameters
The DROP PACKAGE statement has the parameters:

Description
■ When you drop only the body of the package, TimesTen does not invalidate

dependent objects. However, you cannot execute one of the procedures or stored
functions declared in the package specification until you re-create the package
body.

■ TimesTen invalidates any objects that depend on the package specification. If you
subsequently reference one of these objects, then TimesTen tries to recompile the
object and returns an error if you have not re-created the dropped package.

■ Do not use this statement to remove a single object from the package. Instead,
re-create the package without the object using the CREATE PACKAGE and
CREATE PACKAGE BODY statements with the OR REPLACE clause.

■ To use the DROP PACKAGE [BODY] statement, you must have PL/SQL enabled
in your database. If you do not have PL/SQL enabled in your database, TimesTen
returns an error.

Example
The following statement drops the body of package samplePackage:

Command> DROP PACKAGE BODY SamplePackage;
Package body dropped.

To drop both the specification and body of package samplepackage:

Command> DROP PACKAGE samplepackage;
Package dropped.

Parameter Description

PACKAGE [BODY] Specify BODY to drop only the body of the package. Omit
BODY to drop both the specification and body of the package.

[Owner.]PackageName Name of the package to be dropped.

DROP PACKAGE [BODY]

SQL Statements 5-129

See also
CREATE PACKAGE

DROP PROCEDURE

5-130 Oracle TimesTen In-Memory Database SQL Reference

DROP PROCEDURE

The DROP PROCEDURE statement removes a standalone stored procedure from the
database. Do not use this statement to remove a procedure that is part of a package.

Required privilege
No privilege is required for the procedure owner.

DROP ANY PROCEDURE for another user’s procedure.

SQL syntax
DROP PROCEDURE [Owner.]ProcedureName

Parameters
The DROP PROCEDURE statement has the parameter:

Description
■ When you drop a procedure, TimesTen invalidates objects that depend on the

dropped procedure. If you subsequently reference one of these objects, TimesTen
attempts to recompile the object and returns an error message if you have not
re-created the dropped procedure.

■ Do not use this statement to remove a procedure that is part of a package. Either
drop the package or redefine the package without the procedure using the
CREATE PACKAGE statement with the OR REPLACE clause.

■ To use the DROP PROCEDURE statement, you must have PL/SQL enabled in
your database. If you do not have PL/SQL enabled in your database, an error is
thrown.

Examples
The following statement drops the procedure myproc and invalidates all objects that
depend on myproc:

Command> DROP PROCEDURE myproc;
Procedure dropped.

If PL/SQL is not enabled in your database, TimesTen returns an error:

Command> DROP PROCEDURE myproc;

 8501: PL/SQL feature not installed in this TimesTen database
The command failed.

See also
CREATE PROCEDURE

Parameter Description

[Owner.]ProcedureName Name of the procedure to be dropped.

DROP SEQUENCE

SQL Statements 5-131

DROP SEQUENCE

The DROP SEQUENCE statement removes an existing sequence number generator.

Required privilege
No privilege is required for the sequence owner.

DROP ANY SEQUENCE for another user’s sequence.

SQL syntax
DROP SEQUENCE [Owner.]SequenceName

Parameters
The DROP SEQUENCE statement has the parameter:

Description
■ Sequences can be dropped while they are in use.

■ There is no ALTER SEQUENCE statement in TimesTen. To alter a sequence, use
the DROP SEQUENCE statement and then create a new sequence with the same
name. For example, to change the MINVALUE, drop the sequence and re-create it
with the same name and with the desired MINVALUE.

■ If the sequence is part of a replication scheme, use the ALTER REPLICATION
statement to drop the sequence from the replication scheme. Then use the DROP
SEQUENCE statement to drop the sequence.

Examples
The following statement drops mysequence:

DROP SEQUENCE mysequence;

See also
CREATE SEQUENCE

Parameter Description

[Owner.]SequenceName Name of the sequence number generator

DROP REPLICATION

5-132 Oracle TimesTen In-Memory Database SQL Reference

DROP REPLICATION

The DROP REPLICATION statement destroys a replication scheme and deletes it from
the executing data store.

Required privilege
ADMIN

SQL syntax
DROP REPLICATION [Owner.]ReplicationSchemeName

Parameters
The DROP REPLICATION statement has the parameter:

Description
Dropping the last replication scheme at a data store does not delete the replicated
tables. These tables exist and persist at a data store whether or not any replication
schemes are defined.

Examples
The following statement erases the executing data store's knowledge of replication
scheme, r:

DROP REPLICATION r;

See also
ALTER REPLICATION
CREATE REPLICATION

Parameter Description

[Owner.]ReplicationSchemeName Name assigned to the replication scheme.

DROP TABLE

SQL Statements 5-133

DROP TABLE

The DROP TABLE statement deletes the specified table, including any hash indexes
and any range indexes associated with it.

Required privilege
No privilege is required for the table owner.

DROP ANY TABLE for another user’s table.

SQL syntax
DROP TABLE [Owner.]TableName

Parameters
The DROP TABLE statement has the parameter:

Description
■ If you attempt to drop a table that is in use, an error results.

■ If a DROP TABLE operation is or was active in an uncommitted transaction, other
transactions doing DML operations that do not access that table are allowed to
proceed.

■ If the table is a replicated table, you can use the DROP REPLICATION statement
to drop the replication scheme before issuing the DROP TABLE statement. You can
also use the ALTER REPLICATION statement to drop the table from the
replication scheme. Once you drop the table from the replication scheme, you can
use the DROP TABLE statement to drop the table.

■ A temporary table cannot be dropped by a connection if some other connection
has some non-empty instance of the table.

Examples
CREATE TABLE vendorperf

(ordernumber INTEGER,
delivday TT_SMALLINT,
delivmonth TT_SMALLINT,
delivyear TT_SMALLINT,
delivqty TT_SMALLINT,
remarks VARCHAR2(60))

CREATE UNIQUE INDEX vendorperfindex ON vendorperf (ordernumber);

The following statement drops the table and index.

DROP TABLE vendorperf ;

Parameter Description

[Owner.]TableName Identifies the table to be dropped.

DROP USER

5-134 Oracle TimesTen In-Memory Database SQL Reference

DROP USER

The DROP USER statement removes a user from the database.

Required privilege
ADMIN

SQL syntax
DROP USER user

Parameters
The DROP USER statement has the parameter:

Description
Before you can drop a user:

■ The user must exist in the database.

■ You must drop objects that the user owns.

Examples
Remove user terry from the database:

DROP USER terry;
User dropped.

See also
CREATE USER
ALTER USER
GRANT
REVOKE

Parameter Description

user Name of the user that is being removed from the database. The user
must first have been introduced to the TimesTen database by a
CREATE USER statement.

FLUSH CACHE GROUP

SQL Statements 5-135

FLUSH CACHE GROUP

The FLUSH CACHE GROUP statement flushes data from TimesTen cache tables to
Oracle tables. This statement is available only for user managed cache groups. For a
description of cache group types, see "User managed and system managed cache
groups" on page 5-49.

There are two variants to this operation: one that accepts a WHERE clause, and one
that accepts a WITH ID clause.

FLUSH CACHE GROUP is meant to be used when commit propagation (from
TimesTen to Oracle) is turned off. Instead of propagating every transaction upon
commit, many transactions can be committed before changes are propagated to Oracle.
For each cache instance ID, if the cache instance exists in the Oracle database, the
operation in the Oracle database consists of an update. If the cache instance does not
exist in the Oracle database, TimesTen inserts it.

This is useful, for example, in a shopping cart application in which many changes may
be made to the cart, which uses TimesTen as a high-speed cache, before the order is
committed to the master Oracle table.

Only inserts and updates are flushed. Inserts are propagated as inserts if the record
does not exist in the Oracle table or as updates (if the record already exists). It is not
possible to flush a delete. That is, if a record is deleted on TimesTen, there is no way to
"flush" that delete to the Oracle table. Deletes must be propagated either manually or
by turning commit propagation on. Attempts to flush deleted records are silently
ignored. No error or warning is issued. Records from tables that are specified as READ
ONLY or PROPAGATE cannot be flushed to Oracle tables.

Required privileges
No privilege is required for the cache group owner.

FLUSH or FLUSH ANY CACHE GROUP for another user’s cache group.

SQL syntax
FLUSH CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression];

or

FLUSH CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList)

Parameters
The FLUSH CACHE GROUP statement has the parameters:

Note: Using a WITH ID clause usually results in better system
performance than using a WHERE clause.

Parameter Description

[Owner.]GroupName Name of the cache group to be flushed.

ConditionalExpression A search condition to qualify the target rows of the operation.

FLUSH CACHE GROUP

5-136 Oracle TimesTen In-Memory Database SQL Reference

Description
■ WHERE clauses are generally used to apply the operation to a set of instances,

rather than to a single instance or to all instances. The flush operation uses the
WHERE clause to determine which instances to send to the Oracle database.

■ All table names used in cache group WHERE clauses should be fully qualified
with an owner name to allow other users to execute the same WHERE clauses
against the same cache group. Without an owner name, all tables referenced by
cache group WHERE clauses are assumed to be owned by the current login name
executing the cache group operation.

■ When the WHERE clause is omitted, the entire contents of the cache group is
flushed to Oracle tables. When the WHERE clause is included, it is allowed to
include only the root table.

■ If propagates to Oracle tables are turned off (such as when the
ttCachePropagateFlagSet built-in procedure has been called with an
argument of zero in the current transaction) then all tables, with the exception of
read-only tables, can be flushed to Oracle tables. Otherwise, only tables which are
not marked as READ ONLY or PROPAGATE can be flushed to Oracle tables.

■ Following the execution of a FLUSH CACHE GROUP statement, the ODBC
function SQLRowCount(), the JDBC method getUpdateCount(), and the OCI
function OCIAttrGet() with the OCI_ATTR_ROW_COUNT argument return the
number of cache instances that were flushed.

■ Use the WITH ID clause to specify binding parameters

Restrictions
■ Do not use the WITH ID clause on AWT or SWT cache groups, user managed

cache groups with the propagate attribute, or autorefreshed and propagated user
managed cache groups unless the cache group is a dynamic cache group.

■ Do not use the WITH ID clause with the COMMIT EVERY n ROWS clause.

Examples
FLUSH CACHE GROUP marketbasket;

FLUSH CACHE GROUP marketbasket
WITH ID(10);

See also
CREATE CACHE GROUP

WITH ID
ColumnValueList

The WITH ID clauses allows you to use primary key values to
flush the cache instance. Specify ColumnValueList as either a
list of literals or binding parameters to represent the primary key
values.

Parameter Description

GRANT

SQL Statements 5-137

GRANT

The GRANT statement assigns one or more privileges to a user.

Required privilege
ADMIN to grant system privileges.

ADMIN or the object owner to grant object privileges.

SQL syntax
GRANT {SystemPrivilege [,...] | ALL [PRIVILEGES]} [...] TO {user |PUBLIC} [,...]

GRANT {{ObjectPrivilege [,...] | ALL [PRIVILEGES]} ON {[owner.]object}[,...]} TO
{user | PUBLIC} [,...]

Parameters
Granting system privileges:

Granting object privileges:

Description
■ One or more system privileges can be granted to a user by a user with ADMIN

privilege.

■ One or more object privileges can be granted to a user by the owner of the object.

■ One or more object privileges can be granted to a user on any object by a user with
ADMIN privilege.

■ To remove a privilege from a user, use the REVOKE statement.

Parameter Description

SystemPrivilege See "System privileges" on page 6-1 for a list of acceptable values.

ALL [PRIVILEGES] Assigns all system privileges to the user.

user Name of the user to whom privileges are being granted. The user
name must first have been introduced to the TimesTen database by a
CREATE USER statement.

PUBLIC Specifies that the privilege is granted to all users.

Parameter Description

ObjectPrivilege See "Object privileges" on page 6-3 for a list of acceptable values.

ALL [PRIVILEGES] Assigns all object privileges to the user.

[owner.]object object is the name of the object on which privileges are being
granted. owner is the owner of the object. If owner is not specified,
then the user who is granting the privilege is assumed to be the
owner.

user Name of the user to whom privileges are being granted. The user
must exist in the database.

PUBLIC Specifies that the privilege is granted to all users.

GRANT

5-138 Oracle TimesTen In-Memory Database SQL Reference

■ You cannot grant system privileges and object privileges in the same statement.

■ Only one object can be specified in an object privilege statement.

Examples
Grant the ADMIN privilege to the user terry:

GRANT admin TO terry;

Assuming the grantor has ADMIN privilege, grant the SELECT privilege to user
terry on the customers table owned by user pat:

GRANT select ON pat.customers TO terry;

Grant an object privilege to user terry:

GRANT select ON emp_details_view TO terry;

See also
CREATE USER
ALTER USER
DROP USER
REVOKE
"The PUBLIC role" on page 6-5

INSERT

SQL Statements 5-139

INSERT

The INSERT statement adds rows to a table.

The following expressions can be used in the VALUES clause of an INSERT statement:

■ TO_CHAR

■ TO_DATE

■ Sequence NEXTVAL and Sequence CURRVAL

■ CAST

■ DEFAULT

■ SYSDATE and GETDATE

■ USER functions

■ Expressions

■ SYSTEM_USER

Required privilege
No privilege is required for the table owner.

INSERT for another user’s table.

SQL syntax
INSERT INTO [Owner.]TableName [(Column [,...])]
VALUES (SingleRowValues)
[RETURNING|RETURN Expression[,...] INTO DataItem[,...]]

The SingleRowValues parameter has the syntax:

{NULL|{?|:DynamicParameter}|{Constant}| DEFAULT}[,...]

Parameters

Parameter Description

Owner The owner of the table into which data is inserted.

TableName Name of the table into which data is inserted.

Column Each column in this list is assigned a value from
SingleRowValues.

If you omit one or more of the table's columns from this list, then
the value of the omitted column in the inserted row is the column
default value as specified when the table was created or last altered.
If any omitted column has a NOT NULL constraint and has no
default value, then the database returns an error.

If you omit a list of columns completely, then you must specify
values for all columns in the table

?

:DynamicParameter

Place holder for a dynamic parameter in a prepared SQL statement.
The value of the dynamic parameter is supplied when the statement
is executed.

Constant A specific value. See "Constants" on page 3-11.

INSERT

5-140 Oracle TimesTen In-Memory Database SQL Reference

Description
■ If you omit any of the table's columns from the column name list, the INSERT

statement places the default value in the omitted columns. If the table definition
specifies NOT NULL for any of the omitted columns and there is no default value,
the INSERT statement fails.

■ BINARY and VARBINARY data can be inserted in character or hexadecimal
format:

– Character format requires single quotes.

– Hexadecimal format requires the prefix '0x before the value.

■ The INSERT operation fails if it violates a foreign key constraint. See "CREATE
TABLE" on page 5-99 for a description of the foreign key constraint.

■ Restrictions on the RETURNING clause:

– Each Expression must be a simple expression. Aggregate functions are not
supported.

– You cannot return a sequence number into an OUT parameter.

– ROWNUM and subqueries cannot be used in the RETURNING clause.

– Parameters in the RETURNING clause cannot be duplicated anywhere in the
INSERT statement.

– In PL/SQL, you cannot use a RETURNING clause with a WHERE CURRENT
operation.

Examples
A new single row is added to the purchasing.vendors table.

INSERT INTO purchasing.vendors
VALUES (9016,

'Secure Systems, Inc.',
'Jane Secret',
'454-255-2087',
'1111 Encryption Way',
'Hush',
'MD',
'00007',
'discount rates are secret');

:pno and :pname are dynamic parameters whose values are supplied at runtime.

INSERT INTO purchasing.parts (partnumber, partname)
 VALUES (:pno, :pname);

Return the annual salary and job_id of a new employee. Declare the variables sal
and jobid with the same data types as salary and job_id. Insert the row into
employees. Print the variables for verification.

DEFAULT Specifies that the column should be updated with the default value.

Expression Valid expression syntax. See Chapter 3, "Expressions".

DataItem Host variable or PL/SQL variable that stores the retrieved
Expression value.

Parameter Description

INSERT

SQL Statements 5-141

Command> VARIABLE sal12 NUMBER(8,2);
Command> VARIABLE jobid VARCHAR2(10) INLINE NOT NULL;

Command> INSERT INTO employees(employee_id, last_name, email, hire_date,
 > job_id, salary)
 > VALUES (211,'Doe','JDOE',sysdate,'ST_CLERK',2400)
 > RETURNING salary*12, job_id INTO :sal12,:jobid;
1 row inserted.

PRINT sal12 jobid;
SAL12 : 28800
JOBID : ST_CLERK

See also
CREATE TABLE
INSERT...SELECT
Chapter 3, "Expressions"

INSERT...SELECT

5-142 Oracle TimesTen In-Memory Database SQL Reference

INSERT...SELECT

The INSERT... SELECT statement inserts the results of a query into a table.

Required privilege
No privilege is required for the object owner.

INSERT and SELECT for another user’s object.

SQL syntax
INSERT INTO [Owner.]TableName [(ColumnName [,...])] InsertQuery

Parameters
The INSERT... SELECT statement has the parameters:

Description
■ The column types of the result set must be compatible with the column types of

the target table.

■ You can specify a sequence CURRVAL or NEXTVAL when inserting values.

■ The target table cannot be referenced in the FROM clause of the InsertQuery.

■ In the InsertQuery, the ORDER BY clause is allowed. The sort order may be
modified using the ORDER BY clause when the result set is inserted into the target
table, but the order is not guaranteed.

■ The INSERT operation fails if there is an error in the InsertQuery.

■ A RETURNING clause cannot be used in an INSERT... SELECT statement.

Examples
New rows are added to the purchasing.parts table that describe which parts are
delivered in 20 days or less.

INSERT INTO purchasing.parts
SELECT partnumber, deliverydays
FROM purchasing.supplyprice
WHERE deliverydays < 20;

Parameter Description

[Owner.]TableName Table to which data is to be added.

ColumnName Column for which values are supplied. If you omit any of the table's
columns from the column name list, the INSERT...SELECT statement
places the default value in the omitted columns. If the table definition
specifies NOT NULL, without a default value, for any of the omitted
columns, the INSERT...SELECT statement fails. You can omit the
column name list if you provide values for all columns of the table in
the same order the columns were specified in the CREATE TABLE
statement. If too few values are provided, the remaining columns are
assigned default values.

InsertQuery Any supported SELECT query. See "SELECT" on page 5-157.

LOAD CACHE GROUP

SQL Statements 5-143

LOAD CACHE GROUP

The LOAD CACHE GROUP statement loads data from an Oracle table into a
TimesTen cache group. The load operation is local. It is not propagated across cache
grid members.

Required privilege
No privilege is required for the cache group owner.

LOAD CACHE GROUP or LOAD ANY CACHE GROUP for another user’s cache
group.

SQL syntax
LOAD CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression]
COMMIT EVERY n ROWS
[PARALLEL NumThreads]

or

LOAD CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList)

Parameters
The LOAD CACHE GROUP has the parameters:

Description
■ Loads all new instances from Oracle that satisfy the cache group definition and are

not yet present in the cache group.

■ LOAD CACHE GROUP is executed in its own transaction, and must be the first
operation in a transaction.

Parameter Description

[Owner.]GroupName Name assigned to the cache group.

ConditionalExpression A search condition to qualify the target rows of the operation.

n The number of rows to insert into the cache group before
committing the work. It must be a nonnegative integer. If n is 0,
the entire statement is executed as one transaction.

[PARALLEL NumThreads] Provides parallel loading for cache group tables. Specifies the
number of loading threads to run concurrently. One thread
performs the bulk fetch from Oracle and (NumThreads - 1)
performs the inserts into TimesTen. Each thread uses its own
connection or transaction.

The minimum value for NumThreads is 2. The maximum value
is 10. If you specify a value greater than 10, TimesTen assumes
the value 10.

WITH ID
ColumnValueList

The WITH ID clauses allows you to use primary key values to
load the cache instance. Specify ColumnValueList as either a
list of literals or binding parameters to represent the primary
key values.

LOAD CACHE GROUP

5-144 Oracle TimesTen In-Memory Database SQL Reference

■ For an explicitly loaded cache group, LOAD CACHE GROUP does not update
cache instances that are already present in the TimesTen cache tables. Therefore,
LOAD CACHE GROUP loads only inserts on Oracle tables into the corresponding
TimesTen cache tables.

■ For a dynamic cache group, LOAD CACHE GROUP loads rows that have been
inserted, updated and deleted on Oracle tables into the cache tables. For more
information about explicitly loaded and dynamic cache groups, see Oracle
In-Memory Database Cache User's Guide.

■ The transaction size is the number of rows inserted before committing the work.
The value of n in COMMIT EVERY n ROWS must be nonnegative and is rounded
up to the nearest multiple of 256 for performance reasons.

■ Errors cause a rollback. When rows are committed periodically, errors abort the
remainder of the load. The load is rolled back to the last commit.

■ If the LOAD statement fails when you specify the COMMIT EVERY n ROWS
(where n is greater than 0), the content of the target cache group could be in an
inconsistent state. Some cache instances may be partially loaded. Use the
UNLOAD statement to unload the cache group, then load again.

■ Table names in subqueries in the WHERE clause of the LOAD CACHE GROUP
statement must be fully qualified.

■ When loading a read-only cache group:

– The AUTOREFRESH state must be paused, and

– The LOAD CACHE GROUP statement cannot have a WHERE clause (except
on a dynamic cache group), and

– The cache group must be empty.

■ If the automatic refresh state of a cache group (explicitly loaded or dynamic) is
PAUSED, the state is changed to ON after a LOAD CACHE GROUP statement
issued on the cache group completes.

■ If the automatic refresh state of a dynamic cache group is PAUSED and the cache
tables are populated, the state remains PAUSED after a LOAD CACHE GROUP
statement issued on the cache group completes.

■ Following the execution of a LOAD CACHE GROUP statement, the ODBC
function SQLRowCount(), the JDBC method getUpdateCount(), and the OCI
function OCIAttrGet() with the OCI_ATTR_ROW_COUNT argument return the
number of cache instances that were loaded.

■ Use the WITH ID clause:

– In place of the WHERE clause for faster loading of the cache instance

– To specify binding parameters.

– If you want to roll back the load transaction upon failure

Restrictions
■ Do not specify the PARALLEL clause:

– With the WITH ID clause

– With the COMMIT EVERY 0 ROWS clause

– When data store level locking is enabled (connection attribute LockLevel is
set to 1)

LOAD CACHE GROUP

SQL Statements 5-145

■ Do not use the WITH ID clause when loading these types of cache groups:

– Explicitly loaded read-only cache groups

– Explicitly loaded user managed with the autorefresh attribute

– User managed with the autorefresh and propagate attributes

■ Do not use the WITH ID clause with the COMMIT EVERY n ROWS clause.

■ The WITH ID clause cannot be used to acquire a cache instance from another
cache grid member.

Examples
CREATE CACHE GROUP recreation.cache

FROM recreation.clubs (
clubname CHAR(15) NOT NULL,
clubphone SMALLINT,
activity CHAR(18),
PRIMARY KEY(clubname))

WHERE (recreation.clubs.activity IS NOT NULL);

LOAD CACHE GROUP recreation.cache
COMMIT EVERY 30 ROWS;

Use the HR schema to illustrate the use of the PARALLEL clause with the LOAD
CACHE GROUP statement. The COMMIT EVERY n rows (where n is greater than 0) is
required. Issue the CACHEGROUPS command. You see cache group cg2 is defined and
the autorefresh state is paused. Unload cache group cg2, then specify the LOAD
CACHE GROUP statement with the PARALLEL clause to provide parallel loading.
You see 25 cache instances loaded.

Command> CACHEGROUPS;

Cache Group SAMPLEUSER.CG2:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 1.5 Minutes

 Root Table: SAMPLEUSER.COUNTRIES
 Table Type: Read Only

 Child Table: SAMPLEUSER.LOCATIONS
 Table Type: Read Only

 Child Table: SAMPLEUSER.DEPARTMENTS
 Table Type: Read Only

1 cache group found.

Command> UNLOAD CACHE GROUP cg2;
25 cache instances affected.
Command> COMMIT;
Command> LOAD CACHE GROUP cg2 COMMIT EVERY 10 ROWS PARALLEL 2;
25 cache instances affected.
Command> COMMIT;

LOAD CACHE GROUP

5-146 Oracle TimesTen In-Memory Database SQL Reference

The following example loads only the cache instances for customers whose customer
number is greater than or equal to 5000 into the TimesTen cache tables in the
new_customers cache group from the corresponding Oracle tables:

LOAD CACHE GROUP new_customers WHERE (oratt.customer.cust_num >= 5000) COMMIT
EVERY 256 ROWS;

See also
REFRESH CACHE GROUP
UNLOAD CACHE GROUP

MERGE

SQL Statements 5-147

MERGE

The MERGE statement allows you to select rows from one or more sources for update
or insertion into a target table. You can specify conditions that are used to evaluate
what rows are updated or inserted into the target table.

Use this statement to combine multiple INSERT and UPDATE statements.

MERGE is a deterministic statement: You cannot update the same row of the target
table multiple times in the same MERGE statement.

Required privilege
No privilege is required for the owner of the target table and the source table.

INSERT or UPDATE on a target table owned by another user and SELECT on a source
table owned by another user.

SQL syntax
MERGE INTO [Owner.]TargetTableName [Alias] USING

{[Owner.]SourceTableName|(Subquery)}[Alias] ON (Condtion)
{MergeUpdateClause MergeInsertClause |
MergeInsertClause MergeUpdateClause |
MergeUpdateClause | MergeInsertClause
}

The syntax for MergeUpdateClause:

WHEN MATCHED THEN UPDATE SET SetClause [WHERE Condition1]

The syntax for MergeInsertClause:

WHEN NOT MATCHED THEN INSERT [Columns [,...]] VALUES
({{Expression | DEFAULT|NULL} [,...] }) [WHERE Condition2]

Parameters
The MERGE statement has the parameters:

Parameter Description

[Owner.]TargetTableName Name of the target table. This is the table into which rows
are either updated or inserted.

[Alias] Optionally, you can specify an alias name for the target or
source table.

USING
{[Owner.]SourceTableName
| (Subquery)} [Alias]

The USING clause indicates the table name or the subquery
that is used for the source of the data. Use a subquery if you
wish to use joins or aggregates. Optionally, you can specify
an alias for the table name or the subquery.

ON (Condition) You specify the condition that is used to evaluate each row of
the target table to determine if the row should be considered
for either a merge insert or a merge update. If the condition
is true when evaluated, then the MergeUpdateClause is
considered for the target row using the matching row from
the SourceTableName. An error is generated if more than
one row in the source table matches the same row in the
target table. If the condition is not true when evaluated, then
the MergeInsertClause is considered for that row.

MERGE

5-148 Oracle TimesTen In-Memory Database SQL Reference

Description
■ You can specify the MergeUpdateClause by itself or with the

MergeInsertClause. Alternatively, you can specify the MergeInsertClause
by itself or with the MergeUpdateClause. If you specify both, you can specify
them in either order.

■ If DUAL is the only table specified in the USING clause and it is not referenced
elsewhere in the MERGE statement, specify DUAL as a simple table rather than
use it in a subquery. In this simple case, to help performance, specify a key
condition on a unique index of the target table in the ON clause.

■ Restrictions on the MergeUpdateClause:

– You cannot update a column that is referenced in the ON condition clause.

– You cannot update source table columns.

■ Restrictions on the MergeInsertClause:

– You cannot insert values of target table columns.

■ Other restrictions:

– Do not use the set operators in the subquery of the source table.

– Do not use a subquery in the WHERE condition of either the
MergeUpdateClause or the MergeInsertClause.

– The target table cannot be a detail table of a materialized view.

– The RETURNING clause cannot be used in a MERGE statement.

Examples
In this example, dual is specified as a simple table. There is a key condition on the
UNIQUE index of the target table specified in the ON clause. The
DuplicateBindMode attribute is set to 1 in this example. (The default is 0.)

Command> CREATE TABLE mergedualex (col1 TT_INTEGER NOT NULL,
col2 TT_INTEGER, PRIMARY KEY (col1));

Command> MERGE INTO mergedualex USING dual ON (col1 = :v1)
> WHEN MATCHED THEN UPDATE SET col2 = col2 + 1
> WHEN NOT MATCHED THEN INSERT VALUES (:v1, 1);

SET SetClause Clause used with the UPDATE statement. For information
on the UPDATE statement, see "UPDATE" on page 5-178.

[WHERE Condition1] For each row that matches the ON (Condition),
Condition1 is evaluated. If the condition is true when
evaluated, then the row is updated. You can refer to either
the target table or the source table in this clause. You cannot
use a subquery. The clause is optional.

INSERT
[Columns[,...]]VALUES
({{Expression
|DEFAULT|NULL} [,...]})

Columns to insert into the target table. For more information
on the INSERT statement, see "INSERT" on page 5-139.

[WHERE Condition2] If specified, Condition2 is evaluated. If the condition is
true when evaluated, then the row is inserted into the target
table. The condition can refer to the source table only. You
cannot use a subquery.

Parameter Description

MERGE

SQL Statements 5-149

Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 'V1' (TT_INTEGER) > 10
1 row merged.
Command> SELECT * FROM mergedualex;
< 10, 1 >
1 row found.

In this example, a table called contacts is created with columns employee_id and
manager_id. One row is inserted into the contacts table with values 101 and NULL
for employee_id and manager_id respectively. The MERGE statement is used to
insert rows into the contacts table using the data in the employees table. A SELECT
FIRST 3 rows is used to illustrate that in the case where employee_id is equal to 101,
manager_id is updated to 100. The remaining 106 rows from the employees table
are inserted into the contacts table:

Command> CREATE TABLE contacts (employee_id NUMBER (6) NOT NULL PRIMARY KEY,
 > manager_id NUMBER (6));
Command> SELECT employee_id,manager_id FROM employees WHERE employee_id =101;
< 101, 100 >
1 row found.
Command> INSERT INTO contacts VALUES (101,null);
1 row inserted.
Command> SELECT COUNT (*) FROM employees;
< 107 >
1 row found.
Command> MERGE INTO contacts c
> USING employees e
> ON (c.employee_id = e.employee_id)
> WHEN MATCHED THEN
> UPDATE SET c.manager_id = e.manager_id
> WHEN NOT MATCHED THEN
> INSERT (employee_id, manager_id)
> VALUES (e.employee_id, e.manager_id);
107 rows merged.
Command> SELECT COUNT (*) FROM contacts;
< 107 >
1 row found.
Command> SELECT FIRST 3 employee_id,manager_id FROM employees;
< 100, <NULL> >
< 101, 100 >
< 102, 100 >
3 rows found.
Command> SELECT FIRST 3 employee_id, manager_id FROM contacts;
< 100, <NULL> >
< 101, 100 >
< 102, 100 >
3 rows found.

REFRESH CACHE GROUP

5-150 Oracle TimesTen In-Memory Database SQL Reference

REFRESH CACHE GROUP

The REFRESH CACHE GROUP statement is equivalent to an UNLOAD CACHE
GROUP statement followed by a LOAD CACHE GROUP statement.

Required privilege
■ CREATE SESSION on the Oracle schema and SELECT on the Oracle tables.

■ No privilege for the cache group is required for the cache group owner.

■ REFRESH CACHE GROUP or REFRESH ANY CACHE GROUP for another user’s
cache group

SQL syntax
REFRESH CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression]
COMMIT EVERY n ROWS
[PARALLEL NumThreads
]]

or

REFRESH CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList)

Parameters
The REFRESH CACHE GROUP has the parameters:

Description
■ A REFRESH CACHE GROUP statement must be executed in its own transaction.

■ REFRESH CACHE GROUP replaces all or specified cache instances in the
TimesTen cache tables with the most current data from the corresponding Oracle

Parameter Description

[Owner.]GroupName Name assigned to the cache group.

ConditionalExpression A search condition to qualify the target rows of the operation.

n The number of rows to insert into the cache group before
committing the work. The value must be a nonnegative integer.
If the value is 0, the entire statement is executed as one
transaction.

PARALLEL [NumThreads] Provides parallel loading for cache group tables. Specifies the
number of loading threads to run concurrently. One thread
performs the bulk fetch from Oracle and (NumThreads - 1)
performs the inserts into TimesTen. Each thread uses its own
connection or transaction.

The minimum value for NumThreads is 2. The maximum value
is 10. If you specify a value greater than 10, TimesTen assumes
the value 10.

WITH ID
ColumnValueList

The WITH ID clauses allows you to use primary key values to
refresh the cache instance. Specify ColumnValueList as
either a list of literals or binding parameters to represent the
primary key values.

REFRESH CACHE GROUP

SQL Statements 5-151

tables even if an instance is already present in the cache tables. For explicitly
loaded cache groups, a refresh operation is equivalent to an UNLOAD CACHE
GROUP statement followed by a LOAD CACHE GROUP statement. Operations
on all rows in the Oracle tables including inserts, updates and deletes are applied
to the cache tables. For dynamic cache groups, a refresh operation refreshes only
rows that are updated or deleted on Oracle tables into the cache tables. For more
information on explicitly loaded and dynamic cache groups, see Oracle In-Memory
Database Cache User's Guide.

■ When refreshing a read-only cache group:

– The AUTOREFRESH statement must be paused, and

– The REFRESH statement cannot have a WHERE clause unless the cache group
is a dynamic cache group.

■ If the automatic refresh state of a cache group (dynamic or explicitly loaded) is
PAUSED, the state is changed to ON after an unconditional REFRESH CACHE
GROUP statement issued on the cache group completes.

■ If the automatic refresh state of a dynamic cache group is PAUSED, the state
remains PAUSED after a REFRESH CACHE GROUP...WITH ID statement
completes.

■ Table names in subqueries in the WHERE clause of the REFRESH CACHE GROUP
statement must be fully qualified.

■ If the REFRESH CACHE GROUP statement fails when you specify COMMIT
EVERY n ROWS (where n is greater than 0), the content of the target cache group
could be in an inconsistent state. Some cache instances may be partially loaded.
Use the UNLOAD CACHE GROUP statement to unload the cache group, then use
the LOAD CACHE GROUP statement to reload the cache group.

■ Following the execution of a REFRESH CACHE GROUP statement, the ODBC
function SQLRowCount(), the JDBC method getUpdateCount(), and the OCI
function OCIAttrGet() with the OCI_ATTR_ROW_COUNT argument return the
number of cache instances that were refreshed.

■ Use the WITH ID clause:

– In place of the WHERE clause for faster refreshing of the cache instance

– To specify binding parameters

– If you want to roll back the refresh transaction upon failure

Restrictions
■ Do not specify the PARALLEL clause:

– With the WITH ID clause

– With the COMMIT EVERY 0 ROWS clause

– When data store level locking is enabled (connection attribute LockLevel is
set to 1)

■ Do not use the WITH ID clause when refreshing these types of cache groups:

– Explicitly loaded read-only cache groups

– Explicitly loaded user managed cache groups with the autorefresh attribute

– User managed cache groups with the autorefresh and propagate attributes

■ Do not use the WITH ID clause with the COMMIT EVERY n ROWS clause.

REFRESH CACHE GROUP

5-152 Oracle TimesTen In-Memory Database SQL Reference

Examples
REFRESH CACHE GROUP recreation.cache COMMIT EVERY 30 ROWS;

Is equivalent to:

UNLOAD CACHE GROUP recreation.cache;
LOAD CACHE GROUP recreation.cache COMMIT EVERY 30 ROWS;

Use the HR schema to illustrate the use of the PARALLEL clause with the REFRESH
CACHE GROUP statement. The COMMIT EVERY n rows (where n is greater than 0) is
required. Issue the CACHEGROUPS command. You see cache group cg2 is defined
and the autorefresh state is paused. Specify the REFRESH CACHE GROUP statement
with the PARALLEL clause to provide parallel loading. You see 25 cache instances
refreshed.

Command> CACHEGROUPS;

Cache Group SAMPLEUSER.CG2:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 1.5 Minutes

 Root Table: SAMPLEUSER.COUNTRIES
 Table Type: Read Only

 Child Table: SAMPLEUSER.LOCATIONS
 Table Type: Read Only

 Child Table: SAMPLEUSER.DEPARTMENTS
 Table Type: Read Only

1 cache group found.
Command> REFRESH CACHE GROUP cg2 COMMIT EVERY 20 ROWS PARALLEL 2;
25 cache instances affected.

See also
ALTER CACHE GROUP
CREATE CACHE GROUP
DROP CACHE GROUP
FLUSH CACHE GROUP
LOAD CACHE GROUP
UNLOAD CACHE GROUP

REFRESH MATERIALIZED VIEW

SQL Statements 5-153

REFRESH MATERIALIZED VIEW

The REFRESH MATERIALIZED VIEW statement refreshes an asynchronous
materialized view manually.

Required privilege
Required privilege on the materialized view log tables:

■ No privilege is required for the owner of the materialized view log tables.

■ SELECT ANY TABLE if not the owner of materialized view log tables.

Required privilege on the materialized view:

■ No privilege is required for the owner of the materialized view.

■ SELECT ANY TABLE if not the owner of materialized view.

SQL syntax
REFRESH MATERIALIZED VIEW ViewName

Parameters

Description
This statement refreshes the specified asynchronous materialized view. It is executed
in a separate thread as a separate transaction and committed. The user transaction is
not affected, but the user thread waits for the refresh operation to be completed before
returning to the user. If you have not specified a refresh interval for an asynchronous
materialized view, using this statement is the only way to refresh the view. If you have
specified a refresh interval, you can still use this statement to refresh the view
manually.

Since the refresh operation is always performed in a separate transaction, the refresh
operation does not wait for any uncommitted user transactions to commit. Only the
committed rows are considered for the refresh operation. This is true for the manual
refresh statement as well as the automatic refresh that takes place at regular intervals.

If the CREATE MATERIALIZED VIEW statement for the view specified a FAST
refresh, then the REFRESH MATERIALIZED VIEW statement uses the incremental
refresh method. Otherwise this statement uses the full refresh method.

Examples
REFRESH MATERALIZED VIEW bookorders;

See also
CREATE MATERIALIZED VIEW
DROP [MATERIALIZED] VIEW

Parameter Description

ViewName Name of the asynchronous materialized view

REVOKE

5-154 Oracle TimesTen In-Memory Database SQL Reference

REVOKE

The REVOKE statement removes one or more privileges from a user.

Required privilege
ADMIN to revoke system privileges.

ADMIN or object owner to revoke object privileges.

SQL syntax
REVOKE {SystemPrivilege [, …] | ALL [PRIVILEGES]} FROM {user |PUBLIC} [,...]

REVOKE {{ObjectPrivilege [,...] | ALL [PRIVILEGES]} ON {[owner.object}} [,...]
FROM {user | PUBLIC}[,...]

Parameters
Revoking system privileges:

Revoking object privileges:

Description
■ Privileges on objects cannot be revoked from the owner of the objects.

■ Any user who can grant a privilege can revoke the privilege even if they were not
the user who originally granted the privilege.

■ Privileges must be revoked at the same level they were granted. You cannot
revoke an object privilege from a user who has the associated system privilege. For
example, if you grant SELECT ANY TABLE to a user and then try to revoke

Parameter Description

SystemPrivilege See "System privileges" on page 6-1 for a list of acceptable values.

ALL [PRIVILEGES] Revokes all system privileges from the user.

user Name of the user from whom privileges are being revoked. The
user name must first have been introduced to the TimesTen
database by a CREATE USER statement.

PUBLIC Specifies that the privilege is revoked for all users.

Parameter Description

ObjectPrivilege See "Object privileges" on page 6-3 for a list of acceptable values.

ALL [PRIVILEGES] Revokes all object privileges from the user.

user Name of the user from whom privileges are to be revoked. The user
name must first have been introduced to the TimesTen database
through a CREATE USER statement.

[owner.]object object is the name of the object on which privileges are being
revoked. owner is the owner of the object. If owner is not specified,
then the user who is revoking the privilege is assumed to the be the
owner.

PUBLIC Specifies that the privilege is revoked for all users.

REVOKE

SQL Statements 5-155

SELECT ON bob.table1, the revoke fails unless you have specifically granted
SELECT ON bob.table1 in addition to SELECT ANY TABLE.

■ If a user has been granted all system privileges, you can revoke a specific
privilege. For example, you can revoke ALTER ANY TABLE from a user who has
been granted all system privileges.

■ If a user has been granted all object privileges, you can revoke a specific privilege
on a specific object from the user. For example, you can revoke the DELETE
privilege on table customers from user terry even if terry has previously
been granted all object privileges.

■ You can revoke all privileges from a user even if the user has not previously been
granted all privileges.

■ You cannot revoke a specific privilege from a user who has not been granted the
privilege.

■ You cannot revoke privileges on objects owned by a user.

■ You cannot revoke system privileges and object privileges in the same statement.

■ You can specify only one object in an object privilege statement.

Examples
Revoke the ADMIN privilege from the user terry:

REVOKE admin, ddl FROM terry;

Assuming the revoker has ADMIN privilege, revoke the UPDATE privilege from
terry on the customers table owned by pat:

REVOKE update ON pat.customers FROM terry;

See also
ALTER USER
CREATE USER
DROP USER
GRANT
"The PUBLIC role" on page 6-5

ROLLBACK

5-156 Oracle TimesTen In-Memory Database SQL Reference

ROLLBACK

Use the ROLLBACK statement to undo work done in the current transaction.

Required privilege
None

SQL syntax
ROLLBACK [WORK]

Parameters
The ROLLBACK statement allows the optional keyword:

Description
When the PassThrough attribute is specified with a value greater than zero, the
Oracle transaction will also be rolled back.

A rollback closes all open cursors.

Examples
Insert a row into the regions table of the HR schema and then roll back the
transaction. First set autocommit to 0:

Command> SET AUTOCOMMIT 0;
Command> INSERT INTO regions VALUES (5,'Australia');
1 row inserted.
Command> SELECT * FROM regions;
< 1, Europe >
< 2, Americas >
< 3, Asia >
< 4, Middle East and Africa >
< 5, Australia >
5 rows found.
Command> ROLLBACK;
Command> SELECT * FROM regions;
< 1, Europe >
< 2, Americas >
< 3, Asia >
< 4, Middle East and Africa >
4 rows found.

See also
COMMIT

Parameter Description

[WORK] Optional clause supported for compliance with the SQL standard.
ROLLBACK and ROLLBACK WORK are equivalent.

SELECT

SQL Statements 5-157

SELECT

The SELECT statement retrieves data from one or more tables. The retrieved data is
presented in the form of a table that is called the "result table" or "query result."

Required privilege
No privilege is required for the object owner.

SELECT for another user’s object.

SELECT ... FOR UPDATE also requires UPDATE privilege for another user’s object.

SQL syntax
The general syntax for a SELECT statement is:

SELECT [FIRST NumRows | ROWS M TO N] [ALL | DISTINCT] SelectList
FROM TableSpec [,...]
[WHERE SearchCondition]
[GROUP BY Expression [,...]]
[HAVING SearchCondition]
[ORDER BY {ColumnID|ColumnAlias|Expression} [ASC | DESC]]
[,...]
[FOR UPDATE [OF [[Owner.]TableName.]ColumnName [,...]]

[NOWAIT | WAIT Seconds]]

The syntax for a SELECT statement that contains the set operators UNION, UNION
ALL, MINUS, or INTERSECT is:

SELECT [ROWS m TO n] [ALL] SelectList
FROM TableSpec [,...]
[WHERE SearchCondition]
[GROUP BY Expression [,...]]
[HAVING SearchCondition] [,...]

{UNION [ALL] | MINUS | INTERSECT}
SELECT [ROWS M TO N] [ALL] SelectList
FROM TableSpec [,...]
[WHERE SearchCondition]
[GROUP BY Expression [,...]]
[HAVING SearchCondition] [,...]
[ORDER BY {ColumnID|ColumnAlias|Expression} [ASC | DESC]

Parameters
The SELECT statement has the parameters:

Parameter Description

FIRST NumRows Specifies the number of rows to retrieve. NumRows must be either a
positive INTEGER or a dynamic parameter placeholder. The syntax
for a dynamic parameter placeholder is either ? or
:DynamicParameter. The value of the dynamic parameter is
supplied when the statement is executed.

SELECT

5-158 Oracle TimesTen In-Memory Database SQL Reference

ROWS m TO n Specifies the range of rows to retrieve where m is the first row to be
selected and n is the last row to be selected. Row counting starts at
row 1. The query SELECT ROWS 1 to n ... returns the same rows as
SELECT FIRST NumRows assuming the queries are ordered and N and
NumRows have the same value.

Use either a positive INTEGER or a dynamic parameter placeholder
for m and n values. The syntax for a dynamic parameter placeholder is
either ? or :DynamicParameter. The value of the dynamic
parameter is supplied when the statement is executed.

ALL Prevents elimination of duplicate rows from the query result. If
neither ALL nor DISTINCT is specified, ALL is assumed.

DISTINCT Ensures that each row in the query result is unique. All NULL values
are considered equal for this comparison. Duplicate rows are not
evaluated.

SelectList Specifies how the columns of the query result are to be derived. The
syntax of SelectList is presented under "SelectList" on page 5-167.

FROM TableSpec Identifies the tables referenced in the SELECT statement. The
maximum number of tables per query is 24.

TableSpec identifies a table from which rows are selected. The table
can be a derived table, which is the result of a SELECT statement in
the FROM clause. The syntax of TableSpec is presented under
"TableSpec" on page 5-170.

WHERE
SearchCondition

The WHERE clause determines the set of rows to be retrieved.
Normally, rows for which SearchCondition is FALSE or NULL are
excluded from processing, but SearchCondition can be used to
specify an outer join in which rows from an outer table that do not
have SearchCondition evaluated to TRUE with respect to any rows
from the associated inner table are also returned, with projected
expressions referencing the inner table set to NULL.

The unary (+) operator may follow some column and ROWID
expressions to indicate an outer join. The (+) operator must follow all
column and ROWID expressions in the join conditions that refer to the
inner table. There are several conditions on the placement of the (+)
operator. These generally restrict the type of outer join queries that can
be expressed. The (+) operator may appear in WHERE clauses, but not
in HAVING clauses. Two tables cannot be outer joined together. An
outer join condition cannot be connected by OR.

See Chapter 4, "Search Conditions" for more information on search
conditions.

GROUP BY
Expression [,...]

The GROUP BY clause identifies one or more expressions to be used
for grouping when aggregate functions are specified in the select list
and when you want to apply the function to groups of rows.

The expression can be of various complexities. For example, it can
designate single or multiple columns. It can include aggregate
functions, arithmetic operations, the ROWID pseudocolumn, or
NULL. It can also be a date or user function, a constant, or a dynamic
parameter.

When you use the GROUP BY clause, the select list can contain only
aggregate functions and columns referenced in the GROUP BY clause.
If the select list contains an *, a TableName.*, or an
Owner.TableName.* construct, then the GROUP BY clause must
contain all columns that the * includes. NULL values are considered
equivalent in grouping rows. If all other columns are equal, all NULLs
in a column are placed in a single group.

If the GROUP BY clause is omitted, the entire query result is treated as
one group.

Parameter Description

SELECT

SQL Statements 5-159

HAVING The HAVING clause can be used in a SELECT query to filter groups of
an aggregate result. The existence of a HAVING clause in a SELECT
query turns the query into an aggregate query. All columns referenced
outside the sources of aggregate functions in every clause except the
WHERE clause must be included in the GROUP BY clause.

Subqueries can be specified in the HAVING clause.

(+) A simple join (also called an inner join) returns a row for each pair of
rows from the joined tables that satisfy the join condition specified in
SearchCondition. Outer joins an extension of this operator in
which all rows of the "outer" table are returned, whether or not
matching rows from the joined inner table are found. In the case no
matching rows are found, any projected expressions referencing the
inner table are given value NULL.

ORDER BY Sorts the query result rows in order by specified columns or
expressions. Specify the sort key columns in order from major sort key
to minor sort key. You can specify as many as 255 columns. For each
column, you can specify whether the sort order is to be ascending or
descending. If neither ASC nor DESC is specified, ascending order is
used. Character strings are compared according to the ASCII collating
sequence for ASCII data.

The ORDER BY clause supports column aliases. Column aliases can be
referenced only in an ORDER BY clause. A single query may declare
several column aliases with the same name, but any reference to that
alias results in an error.

NCHAR types are not supported with ORDER BY.

ColumnID Must correspond to a column in the select list. You can identify a
column to be sorted by giving its name or by giving its ordinal
number. The first column in the select list is column number 1. It is
better to use a column number when referring to columns in the select
list if they are not simple columns. Some examples are aggregate
functions, arithmetic expressions, and constants.

A ColumnID in the ORDER BY clause has the syntax:

{ColumnNumber |[[Owner.]TableName.] ColumnName}

ColumnAlias Used in an ORDER BY clause, the column alias must correspond to a
column in the select list. The same alias can identify multiple columns.

{* | [Owner.]TableName.* |

 {Expression | [[Owner.]TableName.]ColumnName |

 [[Owner.]TableName.]ROWID

 }

[[AS] ColumnAlias]} [,...]

Parameter Description

SELECT

5-160 Oracle TimesTen In-Memory Database SQL Reference

FOR UPDATE

[OF [[Owner.]

TableName.]

ColumnName
[,...]]

[NOWAIT | WAIT
Seconds]

FOR UPDATE

■ Maintains a lock on an element (usually a row) until the end of
the current transaction, regardless of isolation. All other
transactions are excluded from performing any operation on that
element until the transaction is committed or rolled back.

■ FOR UPDATE may be used with joins and the ORDER BY,
GROUP BY, and DISTINCT clauses. Update locks are obtained on
either tables or rows depending on the table/row locking method
chosen by the optimizer.

■ Rows from all tables that satisfy the WHERE clause are locked in
UPDATE mode unless the FOR UPDATE OF clause is specified.
This clause specifies which tables to lock.

■ If using row locks, all qualifying rows in all tables from the table
list in the FROM clause are locked in update mode. Qualifying
rows are those rows that satisfy the WHERE clause. If using table
locks, the table is locked in update mode whether or not there are
any qualifying rows.

■ If the serializable isolation level and row locking are turned on,
nonqualifying rows are downgraded to Shared mode. If a
read-committed isolation level and row locking are turned on,
nonqualifying rows are unlocked.

■ SELECT...FOR UPDATE locks are not blocked by SELECT locks.

FOR UPDATE [OF [[Owner.]TableName.]ColumnName [,...]]

■ Optionally includes the name of the column or columns in the
table to be locked for update.

[NOWAIT | WAIT Seconds]

■ Specifies how to proceed if the selected rows are locked. It does
not apply to table-level locks or database-level locks.

■ NOWAIT specifies that there is no waiting period for locks and an
error is returned if the lock is not available.

■ WAIT Seconds specifies the lock timeout setting.

An error is returned if the lock is not obtained in the specified
amount of time.

The lock timeout setting is expressed in seconds or a fraction of a
second. The data type for Seconds is NUMBER. Values between
0.0 and 1000000.0 are valid.

■ If neither NOWAIT nor WAIT is specified, the lock timeout interval
for the transaction is used.

Parameter Description

SELECT

SQL Statements 5-161

Description
■ When using a correlation name, the correlation name must conform to the syntax

rules for a basic name. (See "Basic names" on page 2-1.) All correlation names
within one SELECT query must be unique. Correlation names are useful when you
join a table to itself. Define multiple correlation names for the table in the FROM
clause and use the correlation names in the SelectList and the WHERE clause
to qualify columns from that table.

■ SELECT... FOR UPDATE is supported in a SELECT that specifies a subquery, but it
can only be specified in the outermost query.

■ If your query specifies either FIRST NumRows or ROWS m TO n, ROWNUM may
not be used to restrict the number of rows returned.

■ FIRST NumRows and ROWS m TO n cannot be used together in the same SELECT
statement.

SelectQuery1

{UNION [ALL] |
MINUS |
INTERSECT}

SelectQuery2

Specifies that the results of SelectQuery1 and SelectQuery2 are
to be combined, where SelectQuery1 and SelectQuery2 are
general SELECT statements with some restrictions.

The UNION operator combines the results of two queries where the
SelectList is compatible. If UNION ALL is specified, duplicate rows
from both SELECT statements are retained. Otherwise, duplicates are
removed.

The MINUS operator combines rows returned by the first query but
not by the second into a single result.

The INTERSECT operator combines only those rows returned by both
queries into a single result.

The data type of corresponding selected entries in both SELECT
statements must be compatible. One type can be converted to the
other type using the CAST operator. Nullability does not need to
match.

The length of a column in the result is the longer length of
correspondent selected values for the column. The column names of
the final result are the column names of the leftmost select.

You can combine multiple queries using the set operators UNION,
UNION ALL, MINUS, and INTERSECT.

One or both operands of a set operator can be a set operator. Multiple
or nested set operators are evaluated from left to right.

The set operators can be mixed in the same query.

Restrictions on the SELECT statement that specify the set operators
are:

■ Neither SELECT statement can specify FIRST NumRows.

■ ORDER BY can be specified to sort the final result but cannot be
used with any individual operand of a set operator. Only column
names of tables or column alias from the leftmost SELECT can be
specified in the ORDER BY clause.

■ GROUP BY can be used to group an individual SELECT operand
of a set operator but cannot be used to group a set operator result.

■ The set operators cannot be used in materialized view or a joined
table.

Parameter Description

SELECT

5-162 Oracle TimesTen In-Memory Database SQL Reference

Examples
This example shows the use of a column alias in the SELECT statement:

SELECT MAX(salary) AS max_salary
FROM employee WHERE employee.age < 30;

This example assumes there are two tables, orders and lineitems.

The orders table is created as shown below:

CREATE TABLE orders(orderno INTEGER, orderdate DATE, customer CHAR(20));
CREATE TABLE lineitems(orderno INTEGER, lineno INTEGER,

qty INTEGER, unitprice DECIMAL(10,2));

Thus for each order, there is one record in the orders table and a record for each
"line" of the order in lineitems.

To find the total value of all orders entered since the beginning of the year, use the
HAVING clause to select only those orders that were entered on or after January 1,
2000:

SELECT o.orderno, customer, orderdate, SUM(qty * unitprice)
FROM orders o, lineitems L
WHERE o.orderno=l.orderno
GROUP BY o.orderno, customer, orderdate
HAVING orderdate >= DATE '2000-01-01';

This query locks all rows in tablea where:

■ tablea.column1 equals at least one tableb.column1 value where
tableb.column2 is greater than 5.

In addition, this query locks all rows in tableb where:

■ tableb.column2 is greater than 5

■ tableb.column1 equals at least one tablea.column1 value.

If no WHERE clause is specified, all rows in both tables would be locked.

SELECT * FROM tablea, tableb
WHERE tablea.column1 = tableb.column1 AND tableb.column2 > 5
FOR UPDATE;

This query returns an error, since the inner table t2 corresponds to two outer tables
(t1 and t3):

SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) AND t3.y = t2.y(+);

This example demonstrates valid syntax:

SELECT * FROM t1, t2
WHERE t1.x = t2.x(+);

This query returns an error, because an outer join condition cannot be connected by
OR:

SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) OR t3.y = 5;

But the following query is valid:

SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) AND (t3.y = 4 OR t3.y = 5);

SELECT

SQL Statements 5-163

A condition cannot use the IN operator to compare a column marked with (+). For
example, the following query returns an error:

SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) AND t2.y(+) IN (4,5);

But the following query is valid:

SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) AND t1.y IN (4,5);

The following query results in an inner join instead of an outer join, because the (+)
operator was not specified in each of the join conditions, and the condition without the
(+) is treated as an inner join condition:

SELECT * FROM t1, t2
WHERE t1.x = t2.x(+) AND t1.y = t2.y;

In the following query, the WHERE clause contains a condition that compares an inner
table column of an outer join with a constant. The (+) operator was not specified and
hence the condition is treated as an inner join condition.

SELECT * FROM t1, t2
WHERE t1.x = t2.x(+) AND t2.y = 3;

The following query returns an error because two tables cannot be outer joined
together:

SELECT * FROM t1, t2
WHERE x1 = x2(+) AND y2 = y1(+);

Find the current sequence value in the student table.

SELECT SEQ.CURRVAL FROM student;

In the following query, the condition 'x2 + y2(+) = 1' is treated as an inner join
condition because the (+) operator was not specified for the column x2 of inner table
t2. The statement returns an error because two tables cannot be outer joined together:

SELECT * FROM t1, t2
WHERE x1 = x2(+) AND x2 + y2(+) = 1;

The following query does not specify an outer join because the (+) operator is not
specified in a join condition:

SELECT * FROM t1, t2
WHERE x2(+) = 1;

The following query produces a derived table, as it contains a SELECT statement in
the FROM clause:

SELECT * FROM t1, (SELECT MAX(x2) maxx2 FROM t2) tab2
WHERE t1.x1 = tab2.maxx2;

The following query joins the results of two SELECT statements.

SELECT * FROM t1
WHERE x1 IN (SELECT x2 FROM t2)
UNION SELECT * FROM t1 WHERE x1 IN (SELECT x3 FROM t3);

Select all orders that have the same price as the highest price in its category:

SELECT

5-164 Oracle TimesTen In-Memory Database SQL Reference

SELECT * FROM orders WHERE price = (SELECT MAX(price)
FROM stock WHERE stock.cat=orders.cat);

The example illustrates the use of the INTERSECT set operator. There is a
department_id in the employees table that is NULL. In the departments table,
the department_id is defined as a NOT NULL primary key. The rows returned from
using the INTERSECT set operator does not include the row in the departments
table whose department_id is NULL.

Command> SELECT department_id FROM employees INTERSECT SELECT department_id FROM
departments;
< 10 >
< 20 >
< 30 >
< 40 >
< 50 >
< 60 >
< 70 >
< 80 >
< 90 >
< 100 >
< 110 >
11 rows found.
Command> SELECT DISTINCT department_id FROM employees;
< 10 >
< 20 >
< 30 >
< 40 >
< 50 >
< 60 >
< 70 >
< 80 >
< 90 >
< 100 >
< 110 >
< <NULL> >
12 rows found.

The example illustrates the use of the MINUS set operator by combining rows
returned by first query but not the second. The row containing the NULL
department_id in the employees table is the only row returned.

Command> SELECT department_id FROM employees MINUS SELECT department_id FROM
departments;
< <NULL> >
1 row found.

The following example sums the salaries for employees in the employees table and
uses the SUBSTR expression to group the data by job function.

Command> SELECT SUBSTR (job_id, 4,10), SUM (salary) FROM employees
GROUP BY SUBSTR (job_id,4,10);
< PRES, 24000 >
< VP, 34000 >
< PROG, 28800 >
< MGR, 24000 >
< ACCOUNT, 47900 >
< MAN, 121400 >
< CLERK, 133900 >
< REP, 273000 >
< ASST, 4400 >

SELECT

SQL Statements 5-165

9 rows found.

The example illustrates the use of the SUBSTR expression in a GROUP BY clause and
the use of a subquery in a HAVING clause. The first 10 rows are returned.

Command> SELECT ROWS 1 TO 10 SUBSTR (job_id, 4,10),department_id, manager_id, SUM
(salary) FROM employees
>GROUP BY SUBSTR (job_id,4,10),department_id, manager_id
> HAVING (department_id, manager_id) IN
> (SELECT department_id, manager_id FROM employees x
> WHERE x.department_id = employees.department_id)
> ORDER BY SUBSTR (job_id, 4,10),department_id,manager_id;
< ACCOUNT, 100, 108, 39600 >
< ACCOUNT, 110, 205, 8300 >
< ASST, 10, 101, 4400 >
< CLERK, 30, 114, 13900 >
< CLERK, 50, 120, 22100 >
< CLERK, 50, 121, 25400 >
< CLERK, 50, 122, 23600 >
< CLERK, 50, 123, 25900 >
< CLERK, 50, 124, 23000 >
< MAN, 20, 100, 13000 >
10 rows found.

The example locks the employees table for update and waits 10 seconds for the lock to
be available. An error is returned if the lock is not acquired in 10 seconds. The first 5
rows are selected.

Command> SELECT FIRST 5 last_name FROM employees FOR UPDATE WAIT 10;
< King >
< Kochhar >
< De Haan >
< Hunold >
< Ernst >
5 rows found.

The example locks the departments table for update. If the selected rows are locked by
another process, an error is returned if the lock is not available. This is because
NOWAIT is specified.

Command> SELECT FIRST 5 last_name e FROM employees e, departments d WHERE
e.department_id = d.department_id FOR UPDATE OF d.department_id NOWAIT;
< Whalen >
< Hartstein >
< Fay >
< Raphaely >
< Khoo >
5 rows found.

Use the HR schema to illustrate the use of a subquery with the FOR UPDATE clause.

Command> SELECT employee_id, job_id FROM job_history WHERE
(employee_id, job_id) NOT IN (SELECT employee_id, job_id
FROM employees) FOR UPDATE;

< 101, AC_ACCOUNT >
< 101, AC_MGR >
< 102, IT_PROG >
< 114, ST_CLERK >
< 122, ST_CLERK >
< 176, SA_MAN >
< 200, AC_ACCOUNT >

SELECT

5-166 Oracle TimesTen In-Memory Database SQL Reference

< 201, MK_REP >
8 rows found.

Illustrate use of a dynamic parameter placeholder for SELECT ROWS m to n and
SELECT FIRST:

Command> SELECT ROWS ? TO ? employee_id FROM employees;

Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 (TT_INTEGER) > 1
Enter Parameter 2 (TT_INTEGER) > 3
< 100 >
< 101 >
< 102 >
3 rows found.
Command> SELECT ROWS :a TO :b employee_id FROM Eeployees;

Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 (TT_INTEGER) > 1
Enter Parameter 2 (TT_INTEGER) > 3
< 100 >
< 101 >
< 102 >
3 rows found.
Command> SELECT FIRST ? employee_id FROM Eeployees;

Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 (TT_INTEGER) > 3
< 100 >
< 101 >
< 102 >
3 rows found.

SELECT

SQL Statements 5-167

SelectList

SQL syntax
The SelectList parameter of the SELECT statement has the syntax:

{* | [Owner.]TableName.* |
{ Expression | [[Owner.]TableName.]ColumnName |
[[Owner.]TableName.]ROWID | NULL

}
[[AS] ColumnAlias] } [,...]

Parameters
The SelectList parameter of the SELECT statement has the parameters:

Description
■ The clauses must be specified in the order given in the syntax diagram.

■ TimesTen does not support subqueries in the SelectList.

■ A result column in the select list can be derived in any of the following ways:

Parameter Description

* Includes, as columns of the query result, all columns of all tables
specified in the FROM clause.

[Owner.]TableName.* Includes all columns of the specified table in the result.

Expression An aggregate query includes a GROUP BY clause or an aggregate
function.

When the SelectList is not an aggregate query, the column
reference must reference a table in the FROM clause.

A column reference in the SelectList of a aggregate query must
must reference a column list in the GROUP BY clause. If there is no
GROUP BY clause, then the column reference must reference a
table in the FROM clause.

[[Owner.]Table.]
ColumnName

Includes a particular column from the named owner's indicated
table. You can also specify the CURRVAL or NEXTVAL column of a
sequence.

[[Owner.]Table.]
ROWID

Includes the ROWID pseudocolumn from the named owner's
indicated table.

NULL When NULL is specified, the default resulting data type is
VARCHAR(0). You can use the CAST function to convert the result
to a different data type. NULL can be specified in the ORDER BY
clause.

ColumnAlias Used in an ORDER BY clause, the column alias must correspond to
a column in the select list. The same alias can identify multiple
columns.

{* |[Owner.]TableName.* |

 { Expression | [[Owner.]TableName.]ColumnName |

 [[Owner.]TableName.]ROWID

 }

 [[AS] ColumnAlias]} [,...]

SelectList

5-168 Oracle TimesTen In-Memory Database SQL Reference

– A result column can be taken directly from one of the tables listed in the
FROM clause.

– Values in a result column can be computed, using an arithmetic expression,
from values in a specified column of a table listed in the FROM clause.

– Values in several columns of a single table can be combined in an arithmetic
expression to produce the result column values.

– The aggregate functions (AVG, MAX, MIN, SUM, and COUNT) can be used to
compute result column values over groups of rows. Aggregate functions can
be used alone or in an expression. You can specify aggregate functions
containing the DISTINCT option that operate on different columns in the same
table. If the GROUP BY clause is not specified, the function is applied over all
rows that satisfy the query. If the GROUP BY clause is specified, the function is
applied once for each group defined by the GROUP BY clause. When you use
aggregate functions with the GROUP BY clause, the select list can contain
aggregate functions, arithmetic expressions, and columns in the GROUP BY
clause.

– A result column containing a fixed value can be created by specifying a
constant or an expression involving only constants.

■ In addition to specifying how the result columns are derived, the select list also
controls their relative position from left to right in the query result. The first result
column specified by the select list becomes the leftmost column in the query result.

■ Result columns in the select list are numbered from left to right. The leftmost
column is number 1. Result columns can be referred to by column number in the
ORDER BY clause. This is especially useful if you want to refer to a column
defined by an arithmetic expression or an aggregate.

■ To join a table with itself, define multiple correlation names for the table in the
FROM clause and use the correlation names in the select list and the WHERE
clause to qualify columns from that table.

■ When you use the GROUP BY clause, one answer is returned per group in
accordance with the select list:

– The WHERE clause eliminates rows before groups are formed.

– The GROUP BY clause groups the resulting rows.

– The select list aggregate functions are computed for each group.

Examples
One value, the average number of days you wait for a part, is returned by the
statement:

SELECT AVG(deliverydays)
FROM purchasing.supplyprice;

The part number and delivery time for all parts that take fewer than 20 days to deliver
are returned by the statement:

SELECT partnumber, deliverydays
FROM purchasing.supplyprice
WHERE deliverydays < 20;

Multiple rows may be returned for a single part.

The part number and average price of each part are returned by the statement:

SELECT

SQL Statements 5-169

SELECT partnumber, AVG(unitprice)
FROM purchasing.supplyprice
GROUP BY partnumber;

In this example, the join returns names and locations of California suppliers. Rows are
returned in ascending partnumber order. Rows containing duplicate part numbers
are returned in ascending vendorname order.

The FROM clause defines two correlation names (v and s), which are used in both the
select list and the WHERE clause.

vendornumber is the only common column between vendors and supplyprice.

SELECT partnumber, vendorname, s.vendornumber,
vendorcity

FROM purchasing.supplyprice s,
purchasing.vendors v

WHERE s.vendornumber = v.vendornumber
AND vendorstate = 'CA'
ORDER BY partnumber, vendorname;

This query joins table purchasing.parts to itself to determine which parts have the
same sales price as the part whose serial number is '1133-P-01'.

SELECT q.partnumber, q.salesprice
FROM purchasing.parts p, purchasing.parts q
WHERE p.salesprice = q.salesprice AND

p.serialnumber = '1133-P-01';

This example shows how to retrieve the rowid of a specific row. The retrieved rowid
value can be used later for another SELECT, DELETE, or UPDATE statement.

SELECT rowid
FROM purchasing.vendors
WHERE vendornumber = 123;

This example shows how to use a column alias to retrieve data from the table
employees.

SELECT max(salary) AS max_salary FROM employees;

TableSpec

5-170 Oracle TimesTen In-Memory Database SQL Reference

TableSpec

SQL syntax
The TableSpec parameter of the SELECT statement has the syntax:

{[Owner.]TableName [CorrelationName] | JoinedTable | DerivedTable}

A simple table specification has the syntax:

[Owner.]TableName

Parameters
The TableSpec parameter of the SELECT statement has the parameters:

Parameter Description

[Owner.]TableName Identifies a table to be referenced.

CorrelationName CorrelationName specifies a synonym for the immediately
preceding table. When accessing columns of that table, use the
correlation name instead of the actual table name within the
statement. The correlation name must conform to the syntax rules
for a basic name. See "Basic names" on page 2-1.

All correlation names within one statement must be unique.

DerivedTable Specifies a table derived from the evaluation of a SELECT query.
No FIRST NumRows or ROWS m TO n clauses are allowed in this
SELECT query.

JoinedTable Specifies the query that defines the table join. The syntax of
JoinedTable is presented under "JoinedTable" on page 5-172.

SELECT

SQL Statements 5-171

DerivedTable

A derived table is the result of select statement in the FROM clause, with an alias.

SQL syntax
The syntax for DerivedTable is:

(Subquery) [CorrelationName]

Parameters
The DerivedTable parameter of the TableSpec clause of a SELECT statement has
the parameters:

Description
When using a derived table, these restrictions apply:

■ The DUAL table can be used in a SELECT statement that references no other
tables, but needs to return at least one row. Selecting from the DUAL table is
useful for computing a constant expression with the SELECT statement. Because
DUAL has only one row, the constant is returned only once.

■ The SelectQuery cannot refer to a column from another derived table.

■ A derived table cannot be used as a source of a joined table.

■ A derived table cannot be used as a target of a DELETE or an UPDATE statement.

Parameter Description

Subquery For information on subqueries, see "Subqueries" on page 3-6.

CorrelationName CorrelationName must be different from any table name
referenced in the query. CorrelationName is optional.

JoinedTable

5-172 Oracle TimesTen In-Memory Database SQL Reference

JoinedTable

The JoinedTable parameter specifies a table derived from a CROSS JOIN, INNER,
LEFT or RIGHT OUTER JOIN.

SQL syntax
The syntax for JoinedTable is:

{CrossJoin | QualifiedJoin}

where CrossJoin is:

TableSpec1 CROSS JOIN TableSpec2

and QualifiedJoin is:

TableSpec1 [JoinType] JOIN TableSpec2 ON SearchCondition

In the QualifiedJoin parameter, JoinType syntax is:

{INNER | LEFT [OUTER] | |RIGHT [OUTER]}

Parameters
The JoinedTable parameter of the TableSpec clause of a SELECT statement has
the parameters:

Parameter Description

CrossJoin Performs a CROSS JOIN on two tables. A CROSS JOIN returns a
result table that is the cartesian product of the input tables. The
result is the same as that of a query with the syntax:

SELECT Selectlist FROM Table1, Table2

QualifiedJoin Specifies that the Join is the result of a join of type JoinType.

TableSpec1 Specifies the first table of the JOIN clause.

TableSpec2 Specifies the second table of the JOIN clause.

JoinType JOIN Specifies the type of join to perform. Supported join types are:

■ INNER

■ LEFT [OUTER]

■ RIGHT [OUTER]

An INNER JOIN returns a result table that combines the rows from
two tables that meet the SearchCondition.

A LEFT OUTER JOIN returnS join rows that match the
SearchCondition and rows from the first table that do not have
the SearchCondition evaluated to true with any row from the
second table.

A RIGHT OUTER JOIN returns join rows that match the
SearchCondition and rows from the second table that do not
have the SearchCondition evaluated to true with any row from
the first table.

ON SearchCondition Specifies the search criteria to be used in a JOIN parameter. This
SearchCondition can only refer to tables referenced in the
current qualified JOIN.

SELECT

SQL Statements 5-173

Description
■ FULL OUTER JOIN is not supported

■ A joined table can be used to replace a table in a FROM clause, anywhere except in
a statement to define a materialized view. Therefore, a joined table can be used in a
UNION, MINUS or INTERSECT, a subquery, a non-materialized view or a derived
table.

■ A temporary table cannot be specified as an operand of a joined table, but a view
can.

■ OUTER JOIN can be specified in two ways, using the (+) operator in the
SearchCondition of the WHERE clause, or to use a JOIN table operation. The
two cannot co-exist in the same statement.

■ Join order and grouping can be specified with a JoinedTable operation, but not
with (+). For example, the following operation is not supported:

t LEFT JOIN (t2 INNER JOIN t3 ON x2=x3) ON (x1 = x2 + x3)

Examples
The following statement joins tables t1 and t2, returning all the rows from t1 where
x1 is less than 10:

SELECT * FROM t1 LEFT JOIN t2 ON x1=x2 WHERE x1<10;

See also
CREATE TABLE
INSERT
INSERT...SELECT
UPDATE

TRUNCATE TABLE

5-174 Oracle TimesTen In-Memory Database SQL Reference

TRUNCATE TABLE

The TRUNCATE TABLE statement is similar to a DELETE statement that deletes all
rows. However, it is faster than DELETE in most circumstances, as DELETE removes
each row individually.

Required privilege
No privilege is required for the table owner.

DELETE for another user’s table.

SQL syntax
TRUNCATE TABLE [Owner.]TableName

Parameters
The TRUNCATE TABLE has the parameter:

Description
■ TRUNCATE is a DDL statement and thus is controlled by the

DDLCommitBehavior attribute. If DDLCommitBehavior=0 (the default), then a
commit is performed before and after execution of the TRUNCATE statement. If
DDLCommitBehavior=1, then TRUNCATE is part of a transaction and these
transactional rules apply:

– TRUNCATE operations can be rolled back.

– Subsequent INSERT statements are not allowed in the same transaction as a
TRUNCATE statement.

■ Concurrent read committed read operations are allowed, and semantics of the
reads are the same as for read committed reads in presence of DELETE statements

■ TRUNCATE is allowed even when there are child tables. However, child tables
need to be empty for TRUNCATE to proceed. If any of the child tables have any
rows in them, TimesTen returns an error indicating that a child table is not empty.

■ TRUNCATE is not supported with detail tables of a materialized view and a table
that is a part of a cache group or a temporary table.

■ When a table contains out-of-line varying-length data, the performance of
TRUNCATE TABLE is similar to that of DELETE statement that deletes all rows in
a table. For more details on out-of line data, see "Numeric data types" on
page 1-15.

■ Where tables are being replicated, the TRUNCATE statement replicates to the
subscriber, even when no rows are operated upon.

■ When tables are being replicated with timestamp conflict checking enabled,
conflicts are not reported.

■ DROP TABLE and ALTER TABLE operations cannot be used to change hash pages
on uncommitted truncated tables.

Parameter Description

[Owner.]TableName Identifies a table to be truncated.

TRUNCATE TABLE

SQL Statements 5-175

Examples
To delete all the rows from the recreation.clubs table, use:

TRUNCATE TABLE recreation.clubs;

See also
ALTER TABLE
DROP TABLE

UNLOAD CACHE GROUP

5-176 Oracle TimesTen In-Memory Database SQL Reference

UNLOAD CACHE GROUP

The UNLOAD CACHE GROUP statement deletes all rows from the cache group. The
unload operation is local. It is not propagated across cache grid members.

Required privilege
No privilege is required for the cache group owner.

UNLOAD CACHE GROUP or UNLOAD ANY CACHE GROUP for another user’s
cache group

SQL syntax
UNLOAD CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression]

or

UNLOAD CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList);

Parameters
The UNLOAD CACHE GROUP has the parameters:

Description
■ This syntax causes the entire content of the cache group to be deleted from the

data store.

■ If the cache group is replicated, an UNLOAD CACHE GROUP statement deletes
the entire content of the cache group at replicas as well.

■ The UNLOAD CACHE GROUP statement can be used for any type of cache
group. For a description of cache group types, see "User managed and system
managed cache groups" on page 5-49.

■ Use the UNLOAD CACHE GROUP statement carefully with cache groups that
have the AUTOFRESH attribute. A row that is unloaded can reappear in the cache
group as the result of an autorefresh operation if the row or its child rows are
updated in Oracle.

■ Following the execution of a UNLOAD CACHE GROUP statement, the ODBC
function SQLRowCount(), the JDBC method getUpdateCount(), and the OCI
function OCIAttrGet() with the OCI_ATTR_ROW_COUNT argument return the
number of cache instances that were unloaded.

■ Use the WITH ID clause to specify binding parameters

Parameter Description

[Owner.]GroupName Name assigned to the cache group.

ConditionalExpression A search condition to qualify the target rows of the operation.

WITH ID
ColumnValueList

The WITH ID clauses allows you to use primary key values to
unload the cache instance. Specify ColumnValueList as either
a list of literals or binding parameters to represent the primary
key values.

UNLOAD CACHE GROUP

SQL Statements 5-177

Restrictions
■ Do not use the WITH ID clause on readonly, autorefreshed user managed or

autorefreshed and propagated user managed cache groups unless the cache group
is a dynamic cache group.

■ Do not use the WITH ID clause with the COMMIT EVERY n ROWS clause.

Examples
CREATE CACHE GROUP recreation.cache

FROM recreation.clubs (
clubname CHAR(15) NOT NULL,
clubphone SMALLINT,
activity CHAR(18),
PRIMARY KEY(clubname))

WHERE (recreation.clubs.activity IS NOT NULL);
UNLOAD CACHE GROUP recreation.cache;

See also
ALTER CACHE GROUP
CREATE CACHE GROUP
DROP CACHE GROUP
FLUSH CACHE GROUP
LOAD CACHE GROUP

UPDATE

5-178 Oracle TimesTen In-Memory Database SQL Reference

UPDATE

The UPDATE statement updates the values of one or more columns in all rows of a
table or in rows that satisfy a search condition.

Required privilege
No privilege is required for the table owner.

UPDATE for another user’s table.

SQL syntax
The UPDATE statement has the syntax:

UPDATE [FIRST NumRows]
{[Owner.]TableName [CorrelationName]}
SET {ColumnName =
{Expression1 | NULL | DEFAULT}} [,...]
[WHERE SearchCondition]
RETURNING|RETURN Expression2[,...] INTO DataItem[,...]

Parameters
The UPDATE statement has the parameters:

Parameter Description

FIRST NumRows Specifies the number of rows to update. FIRST NumRows is not
supported in subquery statements. NumRows must be either a positive
INTEGER or a dynamic parameter placeholder. The syntax for a
dynamic parameter placeholder is either ? or :DynamicParameter.
The value of the dynamic parameter is supplied when the statement is
executed.

[Owner.]TableName
[CorrelationName]

[Owner.]TableName identifies a table to be updated.

CorrelationName specifies a synonym for the immediately
preceding table. When accessing columns of that table, use the
correlation name instead of the actual table name within the
statement. The correlation name must conform to the syntax rules for
a basic name. See "Basic names" on page 2-1.

All correlation names within one statement must be unique.

SET ColumnName Column to be updated. You can update several columns of the same
table with a single UPDATE statement. Primary key columns can be
included in the list of updated columns as long as the values of the
primary key columns are not changed.

Expression1 Any expression that does not contain an aggregate function. The
expression is evaluated for each row qualifying for the update
operation. The data type of the expression must be compatible with
the updated column's data type. Expression1 can specify a column
or sequence CURRVAL or NEXTVAL reference when updating values.

NULL Puts a NULL value in the specified column of each row satisfying the
WHERE clause. The column must allow NULL values.

DEFAULT Specifies that the column should be updated with the default value.

UPDATE

SQL Statements 5-179

Description
■ If the WHERE clause is omitted, all rows of the table are updated as specified by

the SET clause.

■ TimesTen generates a warning when a character or binary string is truncated
during an UPDATE operation.

■ The target table of the UPDATE statement is designated by TableName.

■ A table on which a unique constraint is defined cannot be updated to contain
duplicate rows.

■ The UPDATE operation fails if it violates any foreign key constraint. See "CREATE
TABLE" on page 5-99 for a description of the foreign key constraint.

■ Restrictions on the RETURNING clause:

– Each Expression2 must be a simple expression. Aggregate functions are not
supported.

– You cannot return a sequence number into an OUT parameter.

– ROWNUM and subqueries cannot be used in the RETURNING clause.

– Parameters in the RETURNING clause cannot be duplicated anywhere in the
UPDATE statement.

– Using the RETURNING clause to return multiple rows requires PL/SQL
BULK COLLECT functionality. See Oracle TimesTen In-Memory Database
PL/SQL Developer's Guide.

– In PL/SQL, you cannot use a RETURNING clause with a WHERE CURRENT
operation.

Examples
This example increases the price of parts costing more than $500 by 25 percent.

UPDATE purchasing.parts
SET salesprice = salesprice * 1.25
WHERE salesprice > 500.00;

This example updates the column with the NEXTVAL value from sequence seq.

UPDATE student SET studentno = seq.NEXTVAL WHERE name = 'Sally';

The following query updates the status of all the customers who have at least one
unshipped order:

UPDATE customers SET customers.status = 'unshipped'
WHERE customers.id = ANY

(SELECT orders.custid FROM orders
WHERE orders.status = 'unshipped');

WHERE
SearchCondition

The search condition can contain a subquery. All rows for which the
search condition is TRUE are updated as specified in the SET clause.
Rows that do not satisfy the search condition are not affected. If no
rows satisfy the search condition, the table is not changed.

Expression2 Valid expression syntax. See Chapter 3, "Expressions".

DataItem Host variable or PL/SQL variable that stores the retrieved
Expression2 value.

Parameter Description

UPDATE

5-180 Oracle TimesTen In-Memory Database SQL Reference

The following statement updates all the duplicate orders assuming that id is not a
primary key:

UPDATE orders a
WHERE EXISTS (SELECT 1 FROM orders b

WHERE a.id = b.id AND a.rowid < b.rowid);

Make changes to job_id, salary and department_id for an employee whose last
name is'Jones' in the employees table. Return the values for salary, last_name
and department_id into variables.

Command> VARIABLE bnd1 NUMBER(8,2);
Command> VARIABLE bnd2 VARCHAR2(25) INLINE NOT NULL;
Command> VARIABLE bnd3 NUMBER(4);
Command> UPDATE employees SET job_id='SA_MAN', salary=salary+1000,
 > department_id=140 WHERE last_name='Jones'
 > RETURNING salary*0.25, last_name, department_id
 > INTO :bnd1, :bnd2, :bnd3;
1 row updated.
Command> PRINT bnd1 bnd2 bnd3;
BND1 : 950
BND2 : Jones
BND3 : 140

UPDATE

SQL Statements 5-181

Join update

TimesTen supports "join update" statements. A join update can be used to update one
or more columns of a table using the result of a subquery.

Syntax
UPDATE [Owner.]TableName
SET ColumnName=Subquery
 [WHERE SearchCondition]

or

UPDATE [Owner.]TableName
SET (ColumnName[,…])=Subquery
 [WHERE SearchCondition]

Parameters
The UPDATE statement has the parameters:

Description
The subquery in the SET clause of a join update does not reduce the number of rows
from the target table that are to be updated. The reduction must be done by specifying
the WHERE clause. Thus if a row from the target table qualifies the WHERE clause but
the subquery returns no rows for this row, this row is updated with NULL value in the
updated column.

Examples
If a row from t1 has no match in t2, its x1 value in the first select and its x1,y1
values in the second select is set to NULL.

UPDATE t1 SET x1=(SELECT x2 FROM t2 WHERE id1=id2);
UPDATE t1 SET (x1,y1)=(SELECT x2,y2 FROM t2 WHERE id1=id2);

In order to restrict the update to update only rows from t1 that have a match in t2, a
where clause with subquery has to be provided as follows:

UPDATE t1 SET x1=(SELECT x2 FROM t2 WHERE id1=id2)
 WHERE id1 IN (SELECT id2 FROM t2);
UPDATE t1 SET (x1,y1)=(SELECT x2,y2 FROM t2 WHERE id1=id2)
 WHERE id1 IN (SELECT id2 FROM t2);

Parameter Description

[Owner.]TableName [Owner.]TableName identifies a table to be updated.

SET
(ColumnName[,...])
= Subquery

Column to be updated. You can update several columns of the same
table with a single UPDATE statement. The SET clause can contain
only one subquery, although this subquery can be nested.

The number of values in the SelectList of the subquery must be
the same as the number of columns specified in the SET clause. An
error is returned if the subquery returns more than one row for any
updated row.

WHERE
SearchCondition

The search condition can contain a subquery. All rows for which the
search condition is TRUE are updated as specified in the SET clause.
Rows that do not satisfy the search condition are not affected. If no
rows satisfy the search condition, the table is not changed.

Join update

5-182 Oracle TimesTen In-Memory Database SQL Reference

See also
SELECT

6

Privileges 6-1

6Privileges

This chapter describes privileges that are required to perform TimesTen operations. It
includes these topics:

■ System privileges

■ Object privileges

■ Privilege hierarchy

■ The PUBLIC role

System privileges
A system privilege is the right to perform a particular action or to perform an action
on any object of a particular type. Objects include tables, views, materialized views,
indexes, sequences, cache groups, replication schemes and PL/SQL functions,
procedures and packages. Only the instance administrator or a user with ADMIN
privilege can grant or revoke system privileges.

Table 6–1 System privileges

Privilege Description

ADMIN Allows a user to perform administrative tasks including
checkpointing, backups, migration, and user creation and
deletion.

ALTER ANY CACHE
GROUP

Allows a user to alter any cache group in the database.

ALTER ANY INDEX Allows a user to alter any index in the database.

Note: There is no ALTER INDEX statement.

ALTER ANY
MATERIALIZED VIEW

Allows a user to alter any materialized view in the database.

Note: There is no ALTER MATERIALIZED VIEW statement.

ALTER ANY PROCEDURE Allows a user to alter any PL/SQL procedure, function or
package in the database.

ALTER ANY SEQUENCE Allows a user to alter any sequence in the database.

Note: There is no ALTER SEQUENCE statement.

ALTER ANY TABLE Allows a user to alter any table in the database.

ALTER ANY VIEW Allows a user to alter any view in the database.

Note: There is no ALTER VIEW statement.

CACHE_MANAGER Allows a user to perform operations related to cache groups.

System privileges

6-2 Oracle TimesTen In-Memory Database SQL Reference

CREATE ANY CACHE
GROUP

Allows a user to create a cache group owned by any user in the
database.

CREATE ANY INDEX Allows a user to create an index on any table or materialized
view in the database.

CREATE ANY
MATERIALIZED VIEW

Allows a user to create a materialized view owned by any user
in the database.

CREATE ANY
PROCEDURE

Allows a user to create a PL/SQL procedure, function or
package owned by any user in the database.

CREATE ANY SEQUENCE Allows a user to create a sequence owned by any user in the
database.

CREATE ANY TABLE Allows a user to create a table owned by any user in the
database.

CREATE ANY VIEW Allows a user to create a view owned by any user in the
database.

CREATE CACHE GROUP Allows a user to create a cache group owned by that user.

CREATE MATERIALIZED
VIEW

Allows a user to create a materialized view owned by that user.

CREATE PROCEDURE Allows a user to create a PL/SQL procedure, function or
package owned by that user.

CREATE SEQUENCE Allows a user to create a sequence owned by that user.

CREATE SESSION Allows a user to create a connection to the database.

CREATE TABLE Allows a user to create a table owned by that user.

CREATE VIEW Allows a user to create a view owned by that user.

DELETE ANY TABLE Allows a user to delete from any table in the database.

DROP ANY CACHE
GROUP

Allows a user to drop any cache group in the database.

DROP ANY INDEX Allows a user to drop any index in the database.

DROP ANY
MATERIALIZED VIEW

Allows a user to drop any materialized view in the database.

DROP ANY PROCEDURE Allows a user to drop any PL/SQL procedure, function or
package in the database.

DROP ANY SEQUENCE Allows a user to drop any sequence in the database.

DROP ANY TABLE Allows a user to drop any table in the database.

DROP ANY VIEW Allows a user to drop any view in the database.

EXECUTE ANY
PROCEDURE

Allows a user to execute any PL/SQL procedure, function or
package in the database.

FLUSH ANY CACHE
GROUP

Allows a user to flush any cache group in the database.

INSERT ANY TABLE Allows a user to insert into any table in the database.

LOAD ANY CACHE
GROUP

Allows a user to load any cache group in the database.

REFRESH ANY CACHE
GROUP

Allows a user to flush any cache group in the database.

SELECT ANY SEQUENCE Allows a user to select from any sequence in the database.

Table 6–1 (Cont.) System privileges

Privilege Description

Object privileges

Privileges 6-3

Object privileges
An object privilege is the right to perform a particular action on an object or to access
another user's object. Objects include tables, views, materialized views, indexes,
sequences, cache groups, replication schemes and PL/SQL functions, procedures and
packages.

An object’s owner has all object privileges for that object, and those privileges cannot
be revoked. The object’s owner can grant object privileges for that object to other
database users. A user with ADMIN privilege can grant and revoke object privileges
from users who do not own the objects on which the privileges are granted.

SELECT ANY TABLE Allows a user to select from any table in the database.

UNLOAD ANY CACHE
GROUP

Allows a user to unload any cache group in the database.

UPDATE ANY TABLE Allows a user to update any table in the database.

XLA Allows a user to connect to a database as an XLA reader.

Table 6–2 Object privileges

Privilege Object type Description

DELETE Table Allows a user to delete from a table.

EXECUTE PL/SQL package,
procedure or function

Allows a user to execute a PL/SQL
package, procedure or function directly.

FLUSH Cache group Allows a user to flush a cache group.

INDEX Table or materialized
view

Allows a user to create an index on a table
or materialized view.

INSERT Table Allows a user to insert into a table.

LOAD Cache group Allows a user to load a cache group

REFERENCES Table or materialized
view

Allows a user to create a foreign key
dependency on a table or materialized
view.

The REFERENCES privilege on a parent
table implicitly grants SELECT privilege
on the parent table.

REFRESH Cache group Allows a user to refresh a cache group

SELECT Table, sequence, view or
materialized view

Allows a user to select from a table,
sequence, view or materialized view.

The SELECT privilege allows a user to
perform all operations on a sequence.

A user can be granted the SELECT
privilege on a view without having the
SELECT privilege on its detail table.

UNLOAD Cache group Allows a user to unload a cache group

UPDATE Table Allows a user to update a table

Table 6–1 (Cont.) System privileges

Privilege Description

Privilege hierarchy

6-4 Oracle TimesTen In-Memory Database SQL Reference

Privilege hierarchy
Some privileges confer other privileges. For example, ADMIN privilege confers all
other privileges. The CREATE ANY TABLE system privilege confers the CREATE
TABLE object privilege. Table 6–3 shows the privilege hierarchy.

Cache group privileges have a separate hierarchy except that ADMIN confers the
CACHE_MANAGER privilege.

The CACHE_MANAGER privilege confers these privileges:

■ CREATE ANY CACHE GROUP

■ ALTER ANY CACHE GROUP

■ DROP ANY CACHE GROUP

■ FLUSH ANY CACHE GROUP

■ LOAD ANY CACHE GROUP

■ UNLOAD ANY CACHE GROUP

■ REFRESH ANY CACHE GROUP

■ FLUSH (object)

■ LOAD (object)

■ UNLOAD (object)

■ REFRESH (object)

The CACHE_MANAGER privilege also includes the ability to start and stop the cache
agent and the replication agent and to perform cache grid operations. The built-in
procedures and utilities for these operations are documented in Oracle TimesTen
In-Memory Database Reference.

Table 6–3 Privilege hierarchy

Privilege Confers these privileges

ADMIN All other privileges including CACHE_MANAGER

CREATE ANY INDEX INDEX ON (any table or materialized view)

CREATE ANY
MATERIALIZED VIEW

CREATE MATERIALIZED VIEW

CREATE ANY
PROCEDURE

CREATE PROCEDURE

CREATE ANY SEQUENCE CREATE SEQUENCE

CREATE ANY TABLE CREATE TABLE

CREATE ANY VIEW CREATE VIEW

DELETE ANY TABLE DELETE (any table)

EXECUTE ANY
PROCEDURE

EXECUTE (any procedure)

INSERT ANY TABLE INSERT (any table)

SELECT ANY SEQUENCE SELECT (any sequence)

SELECT ANY TABLE SELECT (any table, materialized view or view)

UPDATE ANY TABLE UPDATE (any table)

The PUBLIC role

Privileges 6-5

CREATE ANY CACHE GROUP confers the CREATE CACHE GROUP privilege for
any cache group.

The PUBLIC role
All users of the database have the PUBLIC role. In a newly created TimesTen database,
by default PUBLIC has SELECT and EXECUTE privileges on various system tables
and views and PL/SQL functions, procedures and packages. You can see the list of
objects by using this query:

SELECT table_name, privilege FROM sys.dba_tab_privs WHERE grantee='PUBLIC';

Privileges that are granted to PUBLIC as part of database creation cannot be revoked.
To see a list of these privileges, use this query:

SELECT table_name, privilege FROM sys.dba_tab_privs WHERE grantor='SYS';

The PUBLIC role

6-6 Oracle TimesTen In-Memory Database SQL Reference

7

System and Replication Tables 7-1

7System and Replication Tables

TimesTen stores metadata (information about the contents of your data store) in
system tables in your data store.

Your applications can read the system tables, but it cannot update the system tables. If
your application defines a table with the same name as a system table, then your
application can read a system table by prefixing the system table name with SYS. For
example, SELECT * FROM SYS.TABLES selects rows from the TABLES system table.
Use the TTREP prefix when using the replication tables.

Information specific to system tables:

■ Locks acquired by users on system tables may prevent others from defining data
or executing the SQLPrepare ODBC function or the
Connection.prepareStatement JDBC method.

■ The last character in name columns is always a space. Therefore, while the column
length for name columns is 31, the maximum object name length is 30.

■ On 64-bit systems, TImesTen system tables declare certain fields as data type TT_
BIGINT. When retrieving these columns with an ODBC program, the application
must bind them using SQL_C_BINARY. For information about SQL_C_BINARY,
see the Microsoft ODBC 2.0 -Programmer's Reference and SDK Guide.

Tables and views reserved for internal or future use
Several system tables and views in TimesTen are reserved for internal or future use.
These tables are not described in detail in this chapter:

■ SYS.ALL_EXTERNAL_TABLES

■ SYS.ALL_SYNONYMS, SYS.DBA_SYNONYMS, SYS.USER_SYNONYMS

■ SYS.COLUMN_HISTORY

■ SYS.DIR$

■ SYS.OBJAUTH$

■ SYS.SYN$

■ SYS.SYSTEMSTATS

■ SYS.TABLE_HISTORY

Note: Some tables contain columns named SYSnumber. Because
these columns contain values used internally by TimesTen, they are
not documented in this chapter.

Tables and views reserved for internal or future use

7-2 Oracle TimesTen In-Memory Database SQL Reference

■ SYS.USER_ASTATUS_MAP

■ TTREP.CLIENTFAILOVER

PL/SQL system tables are reserved for internal use. Use the PL/SQL system views
instead. PL/SQL system tables in TimesTen are:

■ SYS.ARGUMENT$

■ SYS.DEPENDENCY$

■ SYS.ERROR$

■ SYS.IDL_CHAR$

■ SYS.IDL_SB4$

■ SYS.IDL_UB1$

■ SYS.IDL_UB2$

■ SYS.NCOMP_DLL$

■ SYS.OBJ$

■ SYS.OBJERROR$

■ SYS.PLSCOPE_ACTION$

■ SYS.PLSCOPE_IDENTIFIER$

■ SYS.PROCEDURE$

■ SYS.PROCEDUREINFO$

■ SYS.PROCEDUREPLSQL$

■ SYS.SETTINGS$

■ SYS.SOURCE$

■ SYS.USER$

■ SYS.WARNING_SETTINGS$

If PL/SQL is enabled in your database, there are tables and views created for the
operation of the package UTL_RECOMP:

■ SYS.UTL_RECOMP_COMPILED

■ SYS.UTL_RECOMP_ERRORS

■ SYS.UTL_RECOMP_SORTED

■ SYS.UTL_RECOMP_ALL_OBJECTS (PL/SQL view)

■ SYS.UTL_RECOMP_INVALID_ALL (PL/SQL view)

■ SYS.UTL_RECOMP_INVALID_PARALLEL (PL/SQL view)

These PL/SQL system views are reserved for internal use:

■ SYS.CODE_PIECES

■ SYS.CODE_SIZE

■ SYS.DBA_INVALID_OBJECTS

■ SYS.DISK_AND_FIXED_OBJECTS

■ SYS.ERROR_SIZE

■ SYS.PARSED_PIECES

Required privileges to access system tables and views

System and Replication Tables 7-3

■ SYS.PARSED_SIZE

■ SYS.SOURCE_SIZE

Required privileges to access system tables and views
By default PUBLIC has SELECT privileges on various system tables and views and
EXECUTE privileges on various PL/SQL objects. You can see the list of objects by
using this query:

SELECT * FROM sys.dba_tab_privs WHERE grantee='PUBLIC';

 The ADMIN or SELECT ANY TABLE privilege is required to access other system
tables and views unless otherwise noted in the description of the table or view.

SYS.ALL_ARGUMENTS

7-4 Oracle TimesTen In-Memory Database SQL Reference

SYS.ALL_ARGUMENTS

The ALL_ARGUMENTS view lists the arguments of the procedures and functions that
are accessible to the current user.

Related views
■ SYS.DBA_ARGUMENTS lists the arguments of the procedures and functions that

are available in the database. It has the same columns as ALL_ARGUMENTS.

■ SYS.USER_ARGUMENTS describes the arguments of the procedures and
functions that are owned by the current user. This view does not display the
OWNER column.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Object owner.

OBJECT_NAME VARCHAR2 (30) NOT
NULL

Object name.

PACKAGE_NAME VARCHAR2 (30) Package name.

OBJECT_ID TT_BIGINT NOT
NULL

Object number.

OVERLOAD VARCHAR2(12)
INLINE

Indicates the nth overloading ordered by its
appearance in the source; otherwise, it is
NULL.

SUBPROGRAM_ID TT_INTEGER Unique subprogram identifier.

ARGUMENT_NAME VARCHAR2 (30) If the argument is a scalar type, then the
argument name is the name of the argument.
A null argument name denotes a function
return. If the function return or argument is
a composite type, this view will have one
row for each attribute of the composite type.
Attributes are recursively expanded if they
are composite.

The meanings of ARGUMENT_NAME,
POSITION, SEQUENCE, and DATA_LEVEL
are interdependent. Together, as a tuple,
they represent a node of a flattened tree.

ARGUMENT_NAME can refer to:

■ Return type, if ARGUMENT_NAME is
NULL and DATA_LEVEL = 0

■ The argument that appears in the
argument list if ARGUMENT_NAME is
NOT NULL and DATA_LEVEL = 0

■ Attribute name of the composite type if
ARGUMENT_NAME is NOT NULL
and DATA_LEVEL > 0

■ A collection element type if
ARGUMENT_NAME is NULL and
DATA_LEVEL > 0

SYS.ALL_ARGUMENTS

System and Replication Tables 7-5

POSITION TT_INTEGER NOT
NULL

If DATA_LEVEL is 0, then this column
contains the position of this item in the
argument list, or 0 for a function return
value.

If DATA_LEVEL is greater than 0, then this
column contains the position of this item
with respect to its siblings at the same
DATA_LEVEL. For a referenced record field,
this is the index of the field within the
record. For a referenced collection element,
this is 1 because collection elements do not
have siblings.

SEQUENCE TT_INTEGER NOT
NULL

Defines the sequential order of the argument
and its attributes. Argument sequence starts
at 1. Return type and its recursively
expanded (preorder tree walk) attributes
come first, and each argument with its
recursively expanded (preorder tree walk)
attributes follow.

DATA_LEVEL TT_INTEGER NOT
NULL

Nesting depth of the argument for composite
types.

DATA_TYPE VARCHAR2 (30) Data type of the argument.

DEFAULTED VARCHAR2 (1) NOT
NULL

Specifies whether or not the argument is
defaulted.

DEFAULT_VALUE VARCHAR2(4194304)
NOT INLINE

Reserved for future use.

DEFAULT_LENGTH TT_INTEGER Reserved for future use.

IN_OUT VARCHAR2 (9) NOT
NULL

Direction of the argument: (IN, OUT,
IN/OUT)

DATA_LENGTH TT_INTEGER Length of the argument.

DATA_PRECISION TT_INTEGER Length in decimal digits (NUMBER) or
binary digits (FLOAT).

DATA_SCALE TT_INTEGER Digits to the right of the decimal point in a
number.

RADIX TT_INTEGER Argument radix for a number.

CHARACTER_SET_
NAME

VARCHAR2 (16) Character set name for the argument.

TYPE_OWNER VARCHAR2 (30) Owner of the type of the argument.

TYPE_NAME VARCHAR2 (30) Name of the type of the argument. If the
type is a package local type (declared in a
package specification), then the column
displays the name of the package.

TYPE_SUBNAME VARCHAR2 (30) Relevant for package local types. Displays
the name of the type declared in the package
identified in the TYPE_NAME column.

TYPE_LINK VARCHAR2 (128) Relevant for package local types when the
package identified in the TYPE_NAME
column is a remote package. This column
displays the database link used to refer to
the remote package.

TimesTen ignores this value because remote
packages are not supported.

Column name Type Description

SYS.ALL_ARGUMENTS

7-6 Oracle TimesTen In-Memory Database SQL Reference

PLS_TYPE VARCHAR2(30) For numeric arguments, the name of the
PL/SQL type of the argument. NULL,
otherwise.

CHAR_LENGTH NUMBER Character limit for string data types.

CHAR_USED VARCHAR2 (1) NOT
NULL

Indicates whether the byte limit (B) or char
limit (C) is official for the string.

Column name Type Description

SYS.ALL_COL_PRIVS

System and Replication Tables 7-7

SYS.ALL_COL_PRIVS

This view returns no rows. The column definitions are the same as the column
definitions for the SYS. ALL_COL_PRIVS view in the Oracle Database. See Oracle
Database Reference.

Related views
■ SYS.DBA_COL_PRIVS returns no rows.

■ SYS.USER_COL_PRIVS returns no rows.

SYS.ALL_DEPENDENCIES

7-8 Oracle TimesTen In-Memory Database SQL Reference

SYS.ALL_DEPENDENCIES

The ALL_DEPENDENCIES describes dependencies between procedures, packages,
functions, package bodies, and triggers accessible to the current user. This view does
not display the SCHEMAID column.

Related views
■ SYS.DBA_DEPENDENCIES describes all dependencies between objects in the

database. This view does not display the SCHEMAID column.

■ SYS.USER_DEPENDENCIES describes dependencies between objects that are
owned by the current user. This view does not display the OWNER column.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Object owner.

NAME VARCHAR2 (30) NOT
NULL

Object name.

TYPE VARCHAR2 (12) NOT
NULL

Object type.

REFERENCED_
OWNER

VARCHAR2 (30) NOT
NULL

Owner of the referenced object.

REFERENCED_NAME VARCHAR2 (30)
NOT NULL

Name of the referenced object.

REFERENCED_TYPE VARCHAR2 (12) NOT
NULL

Type of the referenced object.

REFERENCED_LINK_
NAME

VARCHAR2 (128) Ignored.

SCHEMAID TT_INTEGER NOT
NULL

ID of the current database.

DEPENDENCY_TYPE VARCHAR2 (4) NOT
NULL

Indicates whether the dependency is a REF
dependency (REF) or not (HARD).

SYS.ALL_DIRECTORIES

System and Replication Tables 7-9

SYS.ALL_DIRECTORIES

The ALL_DIRECTORIES view describes all directories accessible to the current user.

Related views
SYS.DBA_DIRECTORIES describes all directories in the database. It has the same
columns as ALL_DIRECTORIES.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Directory owner

DIRECTORY_NAME VARCHAR2 (30) NOT
NULL

Directory name

DIRECTORY_PATH VARCHAR2 (4000) Directory path

SYS.ALL_ERRORS

7-10 Oracle TimesTen In-Memory Database SQL Reference

SYS.ALL_ERRORS

The ALL_ERRORS describes the current errors on the stored objects accessible to the
current user.

Related views
■ SYS.DBA_ERRORS describes the current errors on all stored objects in the

database. It has the same columns as ALL_ERRORS.

■ SYS.USER_ERRORS describes the current errors on the stored objects that are
owned by the current user. This view does not display the OWNER column.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Object owner.

NAME VARCHAR2 (30) NOT
NULL

Object name.

TYPE VARCHAR2 (12)
NOT NULL

Object type (such as PROCEDURE,
FUNCTION, PACKAGE).

SEQUENCE TT_INTEGER NOT
NULL

Sequence number (for ordering purposes).

LINE TT_INTEGER NOT
NULL

Line number at which the error occurred.

POSITION TT_INTEGER NOT
NULL

Position in line at which the error occurred.

TEXT VARCHAR2 (4000)
NOT INLINE NOT
NULL

Text of the error.

ATTRIBUTE VARCHAR2 (9) NOT
NULL

Indicates whether the error is an error
(ERROR) or a warning (WARNING).

MESSAGE_NUMBER TT_INTEGER Numeric error number (without any prefix).

SYS.ALL_IDENTIFIERS

System and Replication Tables 7-11

SYS.ALL_IDENTIFIERS

The ALL_IDENTIFIERS view displays information about the identifiers in the stored
objects accessible to the current user.

Related views
■ SYS.DBA_IDENTIFIERS displays information about the identifiers in all stored

objects in the database. It has the same columns as ALL_IDENTIFIERS.

■ SYS.USER_IDENTIFIERS describes the identifiers for all stored objects that are
owned by the current user. This view does not display the OWNER column.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Identifier owner.

NAME VARCHAR2 (30) Identifier name.

SIGNATURE CHAR (32) Signature of the identifier.

TYPE VARCHAR2 (18) NOT
NULL

Identifier type.

OBJECT_NAME VARCHAR2 (30) NOT
NULL

Name of the object where the identifier
action occurred.

OBJECT_TYPE VARCHAR2 (13)
NOT NULL

Type of the object where the identifier action
occurred.

USAGE VARCHAR2 (11) NOT
NULL

Type of the identifier usage (Declaration,
Definition, Call, Reference, Assignment).

USAGE_ID TT_INTEGER Unique key for the identifier usage within
the object.

LINE TT_INTEGER Line number of the identifier action.

COL TT_INTEGER Column number of the identifier action.

USAGE_CONTEXT_ID TT_INTEGER Context USAGE_ID of the identifier usage.

SYS.ALL_OBJECTS

7-12 Oracle TimesTen In-Memory Database SQL Reference

SYS.ALL_OBJECTS

The ALL_OBJECTS view describes all objects in the database that are accessible to the
current user.

Related views
■ SYS.DBA_OBJECTS describes all objects in the database. It has the same columns

as ALL_OBJECTS.

■ SYS.USER_OBJECTS describes all objects owned by the current user. This view
does not display the OWNER column.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Object owner.

OBJECT_NAME VARCHAR2 (30) NOT
NULL

Object name.

SUBOBJECT_NAME VARCHAR2 (30) Subobject name is ignored.

OBJECT_ID TT_BIGINT NOT
NULL

Dictionary object number of the object.

DATA_OBJECT_ID TT_BIGINT Is ignored.

OBJECT_TYPE VARCHAR2 (12)
NOT NULL

Object type (such as PROCEDURE,
FUNCTION).

CREATED DATE NOT NULL Timestamp for creation of object.

LAST_DDL_TIME DATE NOT NULL Timestamp for the last modification of the
object resulting from a DDL statement.

TIMESTAMP VARCHAR2 (78) NOT
NULL

Timestamp for the specification of the object
(character data).

STATUS VARCHAR2 (7) NOT
NULL

Status of the object (VALID, INVALID, or
N/A).

TEMPORARY VARCHAR2 (1) NOT
NULL

Indicates whether the object is temporary.
The current session can see only data that it
placed in this object itself.

The value is always 'Y'.

GENERATED VARCHAR2 (1) NOT
NULL

Indicates whether the name of this object
was system generated (Y or N).

Will always be 'N'.

SECONDARY VARCHAR2 (1) NOT
NULL

Whether there is a secondary object created
by the ODCIIndexCreate method of the
Oracle Data Cartridge (Y or N).

Will always be ’N’.

NAMESPACE TT_INTEGER NOT
NULL

Namespace for the object.

EDITION_NAME VARCHAR2 (30) Is ignored.

SYS.ALL_PLSQL_OBJECT_SETTINGS

System and Replication Tables 7-13

SYS.ALL_PLSQL_OBJECT_SETTINGS

The ALL_PLSQL_OBJECT_SETTINGS view displays information about the compiler
settings for the stored objects accessible to the current user.

Related views
■ SYS.DBA_PLSQL_OBJECT_SETTINGS displays information about the compiler

settings for all stored objects in the database. It has the same columns as ALL_
PLSQL_OBJECT_SETTINGS.

■ SYS.USER_PLSQL_OBJECT_SETTINGS describes compiler settings for all stored
objects that are owned by the current user. This view does not display the OWNER
column.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Object owner.

NAME VARCHAR2 (30) NOT
NULL

Object name.

TYPE VARCHAR2 (12) NOT
NULL

Object type (such as PROCEDURE,
FUNCTION).

PLSQL_OPTIMIZE_
LEVEL

NUMBER Optimize level used to compile the object.

PLSQL_CODE_TYPE VARCHAR2 (4000)
NOT INLINE

Compilation mode for the object.

PLSQL_DEBUG VARCHAR2 (4000)
NOT INLINE

Indicates whether the object was compiled
with debug information.

PLSQL_WARNINGS VARCHAR2 (4000)
NOT INLINE

Compiler warning settings that were used to
compile the object.

NLS_LENGTH_
SEMANTICS

VARCHAR2 (4000)
NOT INLINE

NLS length semantics that were used to
compile the object.

PLSQL_CCFLAGS VARCHAR2 (4000)
NOT INLINE

Conditional compilation flag settings that
were used to compile the object.

PLSCOPE_SETTINGS VARCHAR2 (4000)
NOT INLINE

Settings for using PL/Scope.

SYS.ALL_PROCEDURES

7-14 Oracle TimesTen In-Memory Database SQL Reference

SYS.ALL_PROCEDURES

The ALL_PROCEDURES view describes all PL/SQL functions and procedures, along
with associated properties, that are accessible to the current user.

Related views
■ SYS.DBA_PROCEDURES all PL/SQL functions and procedures, along with

associated properties. It has the same columns as ALL_PROCEDURES.

■ SYS.USER_PROCEDURES describes all functions and procedures, along with
associated properties that are owned by the current user. This view does not
display the OWNER column.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Owner of the procedure or function.

OBJECT_NAME VARCHAR2 (30) NOT
NULL

Name of the object: top-level function,
procedure or package name.

PROCEDURE_NAME VARCHAR2 (30) Name of the procedure or function.

OBJECT_ID TT_BIGINT NOT
NULL

Object number.

SUBPROGRAM_ID NUMBER Unique subprogram identifier.

OVERLOAD VARCHAR2(12)
INLINE

Overload unique identifier.

OBJECT_TYPE VARCHAR2 (12) NOT
NULL

Object type.

AGGREGATE VARCHAR2 (3) Indicates if object is an aggregate function
(YES or NO).

TimesTen does not support aggregate
functions so value is 'N'.

PIPELINED VARCHAR2 (3) Indicates if object is a pipelined table
function (YES or NO).

TimesTen does not support PIPELINED so
value is 'N'.

IMPLTYPEOWNER VARCHAR2 (30) Name of owner of the implementation type,
if any.

IMPLTYPENAME VARCHAR2 (30) Name of the implementation type, if any.

PARALLEL VARCHAR2 (3) Indicates whether the procedure or function
is parallel-enabled (YES or NO).

TimesTen does not support PARALLEL, so
value is 'N'.

You can specify the parallel_enable_
clause, but it has no effect.

SYS.ALL_PROCEDURES

System and Replication Tables 7-15

INTERFACE VARCHAR2 (3) YES, if the procedure or function is a table
function implemented using the ODCI
interface; otherwise NO.

TimesTen does not support INTERFACE so
value is 'N'.

DETERMINISTIC VARCHAR2 (3) YES, if the procedure or function is declared
to be deterministic; otherwise NO.

AUTHID VARCHAR2 (12) NOT
NULL

Indicates whether the procedure or function
is declared to execute as DEFINER or
CURRENT_USER (invoker).

Column name Type Description

SYS.ALL_SOURCE

7-16 Oracle TimesTen In-Memory Database SQL Reference

SYS.ALL_SOURCE

The ALL_SOURCE view describes the text source of the stored objects accessible to the
current user.

Related views
■ SYS.DBA_SOURCE describes the text source of all stored objects. It has the same

columns as ALL_SOURCE.

■ SYS.USER_SOURCE describes the text source of the stored objects that are owned
by the current user. This view does not display the OWNER column.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Object owner.

NAME VARCHAR2 (30) NOT
NULL

Object name.

TYPE VARCHAR2 (12) NOT
NULL

Object type (such as PROCEDURE,
FUNCTION, PACKAGE).

LINE TT_INTEGER NOT
NULL

Line number of this line of source.

TEXT VARCHAR2 (4000)
NOT INLINE

Text source of the stored object.

SYS.ALL_STORED_SETTINGS

System and Replication Tables 7-17

SYS.ALL_STORED_SETTINGS

The ALL_STORED_SETTINGS view describes the persistent parameter settings for
stored PL/SQL units for which the current user has execute privileges.

ALL_STORED_SETTINGS is retained for backward compatibility. Use the ALL_
PLSQL_OBJECT_SETTINGS view instead.

Related views
■ SYS.DBA_STORED_SETTINGS describes the persistent parameter settings for

stored PL/SQL units for which the current user has execute privileges. It also
returns parameter information for all objects in the database.

■ SYS.USER_STORED_SETTINGS describes the persistent parameter settings for
stored PL/SQL units, but only shows information about PL/SQL units owned by
the current user.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Name of the database user owning the
stored PL/SQL unit.

OBJECT_NAME VARCHAR2 (30) NOT
NULL

Name of the PL/SQL unit.

OBJECT_ID TT_BIGINT NOT
NULL

Object number of the PL/SQL unit.

OBJECT_TYPE VARCHAR2 (12) NOT
NULL

The type of the PL/SQL unit:
PROCEDURE,FUNCTION, PACKAGE or
PACKAGE BODY.

PARAM_NAME VARCHAR2 (30)
NOT NULL

The name of the parameter stored
persistently with the PL/SQL unit.

PARAM_VALUE VARCHAR2 (4000)
NOT INLINE

The TO_CHAR () representation of the value
of the persistently stored parameter. The
width of this column is operating system
dependent; however, it is not less than 255.

SYS.ALL_TAB_PRIVS

7-18 Oracle TimesTen In-Memory Database SQL Reference

SYS.ALL_TAB_PRIVS

The ALL_TAB_PRIVS view lists the object privileges granted to the current user, the
object privileges granted by the current user, the list of object privileges granted for
objects owned by the current user and the object privileges granted to PUBLIC.

Related views
■ SYS.DBA_TAB_PRIVS describes all object grants in the database.

■ SYS.USER_TAB_PRIVS describes the object grants for which the current user is the
object owner, grantor, or grantee.

Columns

Column Type Description

GRANTOR VARCHAR2(30) NOT NULL Name of the user who granted the
privilege

GRANTEE VARCHAR2(30) NOT NULL Name of the user who has the privilege

TABLE_SCHEMA VARCHAR2(30) NOT NULL Object owner

TABLE_NAME VARCHAR2(31) NOT NULL Object name

PRIVILEGE VARCHAR2(40) NOT NULL Privilege name

GRANTABLE VARCHAR2(3) NOT NULL Value is always NO.

HIERARCHY VARCHAR2(3) NOT NULL Value is always NO.

SYS.ALL_USERS

System and Replication Tables 7-19

SYS.ALL_USERS

The ALL_USERS view lists all users of the database that are visible to the current user.

Related views
■ SYS.DBA_USERS describes all users of the database and contains more columns

than ALL_USERS.

■ SYS.USER_USERS describes the current user of the database and contains more
columns than ALL_USERS.

Columns

Column Type Description

USERNAME VARCHAR2(30) NOT NULL Name of the user

USER_ID TT_INTEGER NOT NULL ID number of the user

CREATED TT_TIMESTAMP NOT NULL Date the user was created

SYS.CACHE_GROUP

7-20 Oracle TimesTen In-Memory Database SQL Reference

SYS.CACHE_GROUP

The CACHE_GROUP table describes the definition of a TimesTen cache.

Columns

Column name Type Description

CGNAME TT_CHAR (31) NOT
NULL

Group name.

CGOWNER TT_CHAR (31) NOT
NULL

Group owner.

CGID TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT
NULL for 64-bit
systems

Id of this cache group.

ROOT TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT
NULL for 64-bit
systems

Unique identifier for cache group's root table

SOURCE TT_CHAR (8) NOT
NULL

Data source for caching. In this release the
only legal value is 'ORACLE'.

CGDURATION TT_INTEGER NOT
NULL

Duration

TBLCNT TT_SMALLINT NOT
NULL

Number of tables in cache group.

REFRESH_MODE TT_CHAR (1) NOT
NULL

The current auto refresh mode.

'N': No auto refresh.

'I': Incremental auto refresh.

'F': Full auto refresh.

REFRESH_STATE TT_CHAR (1) NOT
NULL

The current auto refresh mode.

'N': Off.

'Y': On.

'P': Paused.

REFRESH_INTERVAL TT_BIGINT NOT
NULL

Autorefresh interval in milliseconds.

SYS.CACHE_GROUP

System and Replication Tables 7-21

CGATTRIBUTES BINARY (4) NOT
NULL

Bits 0-7 are for cache group types.

Bits 8-15 are for autoload options.

Bit 0: 1 - READONLY

Bit 1: 1 - SYNCHRONOUS
WRITETHROUGH

Bit 2: 1 - AUTOREFRESH

Bit 3: 1 - PROPAGATE

Bit 8: 1 - Autoload on create (Always 1 for
AUTOREFRESH)

Bit 9: 1 - Dynamic cache group

REFRESH_WITH_
LIMIT

TT_INTEGER NOT
NULL

The maximum number of autorefresh
change log records kept in the trigger log
table in the Oracle database. A larger value
causes the autorefresh to use more space at
Oracle, while it prevents the truncation of
logs that are not autorefreshed to TimesTen
yet, and therefore reduces the possible
fallback to full refresh.

The field is used only by incremental
autorefresh

ORATOP TT_VARCHAR
(409600) NOT INLINE

Reserved for future use

ORAPROXY TT_VARCHAR
(409600) NOT INLINE

Reserved for future use

ORABASE TT_VARCHAR
(409600) NOT INLINE

Reserved for future use

TTALIAS TT_VARCHAR
(409600) NOT INLINE

Reserved for future use

Column name Type Description

SYS.COLUMNS

7-22 Oracle TimesTen In-Memory Database SQL Reference

SYS.COLUMNS

The COLUMNS table describes every column in every table in the data store,
including the name of the column, the type of the column and whether the column is
nullable.

Columns

Column name Type Description

ID TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen identifier of -column's table.

COLNUM TT_SMALLINT NOT
NULL

Ordinal number of column in table (starting at 1).

COLNAME TT_CHAR (31) NOT
NULL

Column name.

COLOPTIONS BINARY (1) NOT
NULL

Column specification flags:

0x01 - column is in a primary key.

0x02 - column value is
varying-length (VARCHAR[2],
NVARCHAR[2],VARBINARY).

0x04 - column value can be NULL.

0x08 - column values are unique.

SYS.COLUMNS

System and Replication Tables 7-23

COLTYPE TT_INTEGER NOT
NULL

Data type of column

 1 TT_SMALLINT
 2 TT_INTEGER
 3 BINARY_FLOAT
 4 BINARY_DOUBLE
 5 TT_CHAR
 6 TT_VARCHAR
 7 BINARY
 8 VARBINARY
11 TT_DECIMAL
12 TT_NCHAR
13 TT_NVARCHAR
14 TT_DATE
15 TIME
16 TT_TIMESTAMP
20 TT_TINYINT
21 TT_BIGINT
22 TT_VARCHAR (inline)
23 VARBINARY (inline)
24 TT_NVARCHAR (inline)
25 NUMBER
26 CHAR
27 VARCHAR2
28 NCHAR
29 NVARCHAR2
30 DATE
31 TIMESTAMP
32 VARCHAR2 (inline)
33 NVARCHAR2 (inline)
34 ROWID

Note: If you are using TimesTen type mode, for
information on COLTYPE, refer to
documentation from previous releases of
TimesTen. For information on TimesTen type
mode, see "TimesTen type mode (backward
compatibility)" on page 1-32.

TYPE_ATTR TT_INTEGER NOT
NULL

Reserved for internal use.

COLLEN TT_INTEGER NOT
NULL for 32-bit
systems;

BIGINT NOT NULL
for 64-bit systems

Length of the column (maximum length for
varying-length columns).

INLINELEN TT_INTEGER NOT
NULL

Identifies how many bytes a given column
contributes to the inline width of a row.

REPUSERID TT_INTEGER NOT
NULL

User-defined identifier for column (set with
-ttSetUserColumnID built-in function).

DEFAULTVALSTR TT_VARCHAR
(409600) NOT INLINE

The default column value.

CHAR_USED TT_CHAR (1) Indicates the semantics for the column:

'B' for BYYE

'C' for CHAR

NULL for non-character columns

Column name Type Description

SYS.COL_STATS

7-24 Oracle TimesTen In-Memory Database SQL Reference

SYS.COL_STATS

The COL_STATS table stores the statistics for table columns in the data store. Statistics
include the number of unique values, number of nulls, number of rows and other
information regarding the distribution of column values. No values are present if
statistics have not been computed.

Columns

Column name Type Description

TBLID TT_INTEGER NOT NULL for 32-bit
systems;

TT_BIGINT NOT NULL for 64-bit
systems

TimesTen table identifier.

COLNUM TT_SMALLINT NOT NULL Ordinal number of column in table
(starting at 1).

INFO VARBINARY (4000000) NOT
INLINE NOT NULL

Contains a binary representative of
the column value distribution
information. See
ttOptUpdateStats for an
explanation of the distribution
information stored in this column. A
text representation of this
information can be retrieved using
ttOptGetColStats.

SYS.DBA_ARGUMENTS

System and Replication Tables 7-25

SYS.DBA_ARGUMENTS

DBA_ARGUMENTS lists the arguments of the procedures and functions that are
available in the database. It has the same columns as SYS.ALL_ARGUMENTS.

SYS.DBA_COL_PRIVS

7-26 Oracle TimesTen In-Memory Database SQL Reference

SYS.DBA_COL_PRIVS

This view returns no rows. The column definitions are the same as the column
definitions for the SYS. DBA_COL_PRIVS view in the Oracle Database. See Oracle
Database Reference.

Required privileges
ADMIN

Related views
■ SYS.ALL_COL_PRIVS returns no rows.

■ SYS.USER_COL_PRIVS returns no rows.

SYS.DBA_DEPENDENCIES

System and Replication Tables 7-27

SYS.DBA_DEPENDENCIES

DBA_DEPENDENCIES describes all dependencies between objects in the database.
This view does not display the SCHEMAID column. See "SYS.ALL_DEPENDENCIES"
on page 7-8 for column descriptions.

SYS.DBA_DIRECTORIES

7-28 Oracle TimesTen In-Memory Database SQL Reference

SYS.DBA_DIRECTORIES

DBA_DIRECTORIES describes all directories in the database. It has the same columns
as SYS.ALL_DIRECTORIES.

SYS.DBA_ERRORS

System and Replication Tables 7-29

SYS.DBA_ERRORS

DBA_ERRORS describes the current errors on all stored objects in the database. It has
the same columns as SYS.ALL_ERRORS.

SYS.DBA_IDENTIFIERS

7-30 Oracle TimesTen In-Memory Database SQL Reference

SYS.DBA_IDENTIFIERS

DBA_IDENTIFIERS displays information about the identifiers in all stored objects in
the database. It has the same columns as SYS.ALL_IDENTIFIERS.

SYS.DBA_OBJECTS

System and Replication Tables 7-31

SYS.DBA_OBJECTS

DBA_OBJECTS describes all objects in the database. It has the same columns as
SYS.ALL_OBJECTS.

SYS.DBA_OBJECT_SIZE

7-32 Oracle TimesTen In-Memory Database SQL Reference

SYS.DBA_OBJECT_SIZE

The DBA_OBJECT_SIZE view describes the size, in bytes, of PL/SQL objects.

Related views
■ USER_OBJECT_SIZE describes the size, in bytes, of PL/SQL objects owned by the

current user. This view does not display the OWNER column.

Columns

Column name Type Description

OWNER VARCHAR2 (30) NOT
NULL

Object owner.

NAME VARCHAR2 (30) NOT
NULL

Object name.

TYPE VARCHAR2 (12) NOT
NULL

Object type (such as PROCEDURE,
FUNCTION, PACKAGE).

SOURCE_SIZE NUMBER Size of the source in bytes. Must be in
memory during compilation or dynamic
recompilation.

PARSED_SIZE NUMBER Size of the parsed form of the object, in
bytes. Must be in memory when an object is
being compiled that references this object.

CODE_SIZE NUMBER NOT NULL Code size, in bytes. Must be in memory
when this object is executing.

ERROR_SIZE NUMBER NOT NULL Size of error messages, in bytes. Must be in
memory during the compilation of the object
when there are compilation errors.

SYS.DBA_PLSQL_OBJECT_SETTINGS

System and Replication Tables 7-33

SYS.DBA_PLSQL_OBJECT_SETTINGS

DBA_PLSQL_OBJECT_SETTINGS displays information about the compiler settings
for all stored objects in the database. It has the same columns as SYS.ALL_PLSQL_
OBJECT_SETTINGS.

SYS.DBA_PROCEDURES

7-34 Oracle TimesTen In-Memory Database SQL Reference

SYS.DBA_PROCEDURES

DBA_PROCEDURES all PL/SQL functions and procedures, along with associated
properties. It has the same columns as SYS.ALL_PROCEDURES.

SYS.DBA_SOURCE

System and Replication Tables 7-35

SYS.DBA_SOURCE

DBA_SOURCE describes the text source of all stored objects. It has the same columns
as SYS.ALL_SOURCE.

SYS.DBA_STORED_SETTINGS

7-36 Oracle TimesTen In-Memory Database SQL Reference

SYS.DBA_STORED_SETTINGS

DBA_STORED_SETTINGS describes the persistent parameter settings for stored
PL/SQL units for which the current user has execute privileges. It also returns
parameter information for all objects in the database. It has the same columns as
SYS.ALL_STORED_SETTINGS.

SYS.DBA_SYS_PRIVS

System and Replication Tables 7-37

SYS.DBA_SYS_PRIVS

The DBA_SYS_PRIVS view lists the system privileges granted to all users and to
PUBLIC.

Required privileges
ADMIN

Related views
SYS.USER_SYS_PRIVS lists system privileges granted to the current user.

Columns

Column Type Description.

GRANTEE VARCHAR2(30) NOT NULL Name of the user with the
privilege

PRIVILEGE VARCHAR2(40) NOT NULL Privilege name

ADMIN OPTION VARCHAR2(3) NOT NULL Indicates whether the user can
grant the privilege. Possible
values are YES and NO.

The value is YES only for the
ADMIN privilege.

SYS.DBA_TAB_PRIVS

7-38 Oracle TimesTen In-Memory Database SQL Reference

SYS.DBA_TAB_PRIVS

The DBA_TB_PRIVS view lists the object privileges granted to all users and to
PUBLIC.

Related views
■ SYS.ALL_TAB_PRIVS lists the object privileges granted to the current user, the

object privileges granted by the current user, the list of object privileges granted
for objects owned by the current user and the object privileges granted to PUBLIC.

■ SYS.USER_TAB_PRIVS lists the object privileges granted to the current user, the
object privileges granted by the current user, and the list of object privileges
granted for objects owned by the current user.

Required privileges
ADMIN

Columns

Column Type Description

GRANTEE VARCHAR2(30) NOT NULL Name of the user with the privilege

OWNER VARCHAR2(31) NOT NULL Object owner

TABLE_NAME VARCHAR2(31) NOT NULL Object name

GRANTOR VARCHAR2(30) NOT NULL Name of the user who granted the
privilege

PRIVILEGE VARCHAR2(40) NOT NULL Privilege name

GRANTABLE VARCHAR2(3) NOT NULL Value is always NO.

HIERARCHY VARCHAR2(3) NOT NULL Value is always NO.

SYS.DBA_USERS

System and Replication Tables 7-39

SYS.DBA_USERS

The DBA_USERS view describes all users of the database.

Related views
■ SYS.ALL_USERS view lists all users of the database that are visible to the current

user.

■ SYS.USER_USERS view describes the current user.

Columns

Column Type Description.

USER_NAME VARCHAR2(30) NOT NULL Name of the user

USER_ID TT_INTEGER NOT NULL ID number of the user

ACCOUNT_STATUS TT_VARCHAR2(32) NOT
NULL

Value is OPEN.

LOCK_DATE TT_TIMESTAMP Value is NULL.

EXPIRY_DATE TT_TIMESTAMP Value is NULL.

DEFAULT_TABLESPACE VARCHAR2(30) NOT NULL Value is USERS.

TEMPORARY_TABLESPACE VARCHAR2(30) NOT NULL Value is TEMP.

CREATED TT_TIMESTAMP NOT NULL Date when the user was
created

INITIAL_RSRC_
CONSUMER_GROUP

VARCHAR2(30) Value is NULL.

EXTERNAL_NAME VARCHAR2(4000) Value is NULL.

SYS.DUAL

7-40 Oracle TimesTen In-Memory Database SQL Reference

SYS.DUAL

The DUAL table can be used in a SELECT statement that references no other tables,
but needs to return at least one row. Selecting from the DUAL table is useful for
computing a constant expression with the SELECT statement. Because DUAL has only
one row, the constant is returned only once.

Columns

Column name Type Description

DUMMY TT_VARCHAR (1)
NOT INLINE NOT
NULL

’X’

SYS.INDEXES

System and Replication Tables 7-41

SYS.INDEXES

The INDEXES table stores information about the indexes in the data store, including
the name, the type (range, bitmap or hash), the index key and whether the index is
unique.

Columns

Column name Type Description

IXNAME TT_CHAR (31) NOT
NULL

Index name.

IXOWNER TT_CHAR (31) NOT
NULL

Name of index owner.

IXID TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen identifier of index.

TBLID TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen identifier of indexed table.

IXTYPE TT_INTEGER NOT
NULL

Index type:

0 - hash index

1 - range index

2 - bitmap index

ISUNIQUE BINARY (1) NOT
NULL

Uniqueness:

0 - nonunique index.

1 - unique index.

ISPRIMARY BINARY (1) NOT
NULL

Primary key:

0 - not a primary key for table.

1 - primary key for table.

USETMPHEAP TT_SMALLINT NOT
NULL

Reserved for internal use.

KEYCNT TT_SMALLINT NOT
NULL

Number of columns in the index key.

KEYCOLS BINARY (32) NOT
NULL

Array of 2-byte integer column numbers of
index key, mapped to binary.

PAGESPARAM TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT
NULL for 64-bit
systems

Number of pages specified for hash index.

SYS.INDEXES

7-42 Oracle TimesTen In-Memory Database SQL Reference

NLSSORTID TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT
NULL for 64-bit
systems

For internal use only.

NLSSORTPARM VARBINARY (1000)
NOT INLINE

For internal use only.

NLSSORTSTR TT_VARCHAR(200)
NOT INLINE

For internal use only.

NLSSORTBUF

SIZE

TT_SMALLINT For internal use only.

NLSSORTMAX

SIZE

TT_SMALLINT NOT
NULL

For internal use only.

HAKANFACTOR TT_INTEGER NOT
NULL

For internal use only.

Column name Type Description

SYS.MONITOR

System and Replication Tables 7-43

SYS.MONITOR

The MONITOR table stores information about system performance. It contains a single
row with statistics about certain events. For many columns, statistics are gathered
starting from the time the data store is loaded into memory and statistics are cleared
when the data store is unloaded from memory. With a ramPolicy of manual or always,
the data store remains in memory when there are no application connections.

For some columns, statistics are gathered as needed. TimesTen does not gather
statistics from the time of the first connection for these columns:

■ PERM_ALLOCATED_SIZE

■ PERM_IN_USE_SIZE

■ TEMP_ALLOCATED_SIZE

■ LAST_LOG_FILE

■ REPHOLD_LOG_FILE

■ REPHOLD_LOG_OFF

■ FIRST_LOG_FILE

■ CHECKPOINT_BYTES_WRITTEN

For most columns, the MONITOR table is reset whenever there are no connections to
the data store. TimesTen does not reset the values of the following columns, even
when there are no connections to the data store:

■ PERM_ALLOCATED_SIZE

■ PERM_IN_USE_SIZE

■ TEMP_ALLOCATED_SIZE

■ LAST_LOG_FILE

■ REPHOLD_LOG_FILE

■ REPHOLD_LOG_OFF

■ FIRST_LOG_FILE

TimesTen frequently updates information in the MONITOR table. To prevent these
updates from slowing down the system, they are not protected by latches. Hence
values in the MONITOR table are not absolutely accurate. They can be used as a
reliable indication of activities in the system.

Columns

Column name Type Description

TIME_OF_1ST_CONNECT TT_CHAR (32) NOT NULL Time at which the first
connection was made.

DS_CONNECTS TT_INTEGER NOT NULL Number of connects to the data
store.

DS_DISCONNECTS TT_INTEGER NOT NULL Number of disconnects from
the data store.

DS_CHECKPOINTS TT_INTEGER NOT NULL Number of checkpoints taken.

SYS.MONITOR

7-44 Oracle TimesTen In-Memory Database SQL Reference

DS_CHECKPOINTS_

FUZZY

TT_INTEGER NOT NULL Number of fuzzy checkpoints
taken.

DS_COMPACTS TT_INTEGER NOT NULL Number of data store
compactions.

PERM_ALLOCATED_SIZE TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Allocated size in kilobytes of
the permanent data partition

PERM_IN_USE_SIZE TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Size in kilobytes of the portion
of the permanent data partition
that is currently in use.

PERM_IN_USE_HIGH_

WATER

TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

The highest amount (in
kilobytes) of permanent data
partition memory in use since
the first connection to the data
store. The value of this field can
be reset to the current value of
the PERM_IN_USE_SIZE
attribute by using the
ttMonitorHighWaterReset
procedure.

TEMP_ALLOCATED_SIZE TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Allocated size in kilobytes of
the temporary data partition

TEMP_IN_USE_SIZE TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Size in kilobytes of the portion
of the temporary data partition
that is currently in use.

TEMP_IN_USE_HIGH_

WATER

TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

The highest amount (in
kilobytes) of temporary data
partition memory in use since
the first connection to the data
store. The value of this field can
be reset to the current value of
the TEMP_IN_USE_SIZE
attribute by using the
ttMonitorHighWaterReset
procedure.

TPL_FETCHES TT_BIGINT NOT NULL Number of times TimesTen
fetches data from Oracle into
TimesTen using transparent
load.

TPL_EXECS TT_BIGINT NOT NULL Number of times TimesTen
communicates with Oracle to
transparently load data into
TimesTen. This count also
includes attempts to perform a
transparent load when there is
no data to fetch from Oracle.

CACHE_HITS TT_BIGINT NOT NULL Number of times TimesTen
successfully finds the required
data in TimesTen.

Column name Type Description

SYS.MONITOR

System and Replication Tables 7-45

PASSTHROUGH_COUNT TT_BIGINT NOT NULL Number of successful
passthrough executions.

XACT_BEGINS TT_BIGINT NOT NULL Number of -transactions
started.

XACT_COMMITS TT_BIGINT NOT NULL Number of durable and
nondurable transactions
-committed.

XACT_D_COMMITS TT_BIGINT NOT NULL Number of transactions
committed durably.

XACT_ROLLBACKS TT_BIGINT NOT NULL Number of transactions rolled
back.

LOG_FORCES TT_BIGINT NOT NULL Number of log flushes to disk.

DEADLOCKS TT_BIGINT NOT NULL Number of deadlocks.

LOCK_TIMEOUTS TT_BIGINT NOT NULL Number of lock requests
denied due to timeouts.

LOCK_GRANTS_

IMMED

TT_BIGINT NOT NULL Number of lock requests
granted without a wait.

LOCK_GRANTS_WAIT TT_BIGINT NOT NULL Number of lock requests
granted after a wait.

CMD_PREPARES TT_BIGINT NOT NULL Number of commands
prepared (compiled).

CMD_REPREPARES TT_BIGINT NOT NULL Number of commands
re-prepared.

CMD_TEMP_INDEXES TT_BIGINT NOT NULL Number of temporary indexes
created during query
-execution.

LAST_LOG_FILE TT_INTEGER NOT NULL Number of last log file.

REPHOLD_LOG_FILE TT_INTEGER NOT NULL Number of last log file held by
replication.

REPHOLD_LOG_OFF TT_INTEGER NOT NULL Offset in last log file held by
replication.

REP_XACT_COUNT TT_INTEGER NOT NULL The number of replicated
transactions generated on the
local store that are being
replicated to at least one peer
data store.

REP_CONFLICT_COUNT TT_INTEGER NOT NULL The number of replicated
transactions that ran into a
conflict when being applied on
the local store.

REP_PEER_

CONNECTIONS

TT_INTEGER NOT NULL The sum of all peer connections
initiated by the local replication
agent. There is one connection
for every peer relationship
where the local store is the
master. If a transport level
failure results in the
establishment of a new
connection, this count is
incremented.

Column name Type Description

SYS.MONITOR

7-46 Oracle TimesTen In-Memory Database SQL Reference

REP_PEER_RETRIES TT_INTEGER NOT NULL The number of retry attempts
while trying to establish a new
peer connection.

FIRST_LOG_FILE TT_INTEGER NOT NULL The number of the oldest
existing (not yet purged) log
file.

LOGBYTES_TO_LOG_

BUFFER

TT_BIGINT NOT NULL The number of bytes written to
the log since first connect. This
value includes the sizes of
actual log records plus any log
overhead.

LOG_FS_READS TT_BIGINT NOT NULL The number of times that a log
read could not be satisfied from
the in-memory log buffer.

LOG_FS_WRITES TT_BIGINT NOT NULL The number of times TimesTen
has written the contents of the
in-memory log buffer to the
operating system. This column
does not count the number of
times data was flushed to disk.
It counts writes to the operating
system's file buffers.

LOG_BUFFER_WAITS TT_BIGINT NOT NULL The number of times a thread
was delayed while trying to
insert a log record into the log
buffer because the log buffer
was full. Generally speaking, if
this value is increasing, it
indicates that the log buffer is
too small.

CHECKPOINT_BYTES_

WRITTEN

TT_INTEGER NOT NULL
for 32-bit systems

TT_BIGINT NOT NULL for
64-bit systems

The number of bytes written to
disk by the most recent
checkpoint operation.

CURSOR_OPENS TT_INTEGER NOT NULL
for 32-bit systems

TT_BIGINT NOT NULL for
64-bit systems

Number of SELECT statements
issued.

CURSOR_CLOSES TT_INTEGER NOT NULL
for 32-bit systems

TT_BIGINT NOT NULL for
64-bit systems

Number of SELECT statements
completed.

CHECKPOINT_BLOCKS_
WRITTEN

TT_INTEGER NOT NULL
for 32-bit systems

TT_BIGINT NOT NULL for
64-bit systems

Total number of blocks written
for all completed checkpoints.

CHECKPOINT_WRITES TT_INTEGER NOT NULL
for 32-bit systems

TT_BIGINT NOT NULL for
64-bit systems

Total number of checkpoint
writes all checkpoints,
including the current
checkpoint.

Column name Type Description

SYS.MONITOR

System and Replication Tables 7-47

REQUIRED_RECOVERY TT_INTEGER NOT NULL 1: When the data store was
initially loaded into RAM at
TIME_OF_1ST_CONNECT,
recovery ran. This means that
the previous time the data store
was in memory, the data store
did not shut down cleanly.
When it was loaded into
memory this time, the log was
replayed and other operations
were performed in an attempt
to recover data.

If DurableCommit had been
set to 0, transactions could have
been lost.

0: The data store was
previously shut down cleanly.
Thus the data store was
restarted cleanly.

TYPE_MODE TT_INTEGER NOT NULL 0: Oracle mode.

1: TimesTen mode.

Column name Type Description

SYS.PLAN

7-48 Oracle TimesTen In-Memory Database SQL Reference

SYS.PLAN

The PLAN table contains the execution plan that the TimesTen query optimizer
prepares after an application calls ttOptSetFlag. See "Generating a query plan" and
"Modifying plan generation" in Oracle TimesTen In-Memory Database Operations Guide.

The execution plan includes the operation performed at each step and the table or
index that it references.

Columns

Column name Type Description

STEP TT_INTEGER NOT NULL Ordinal number of the operation, starting at 1.

LEVEL TT_INTEGER NOT NULL Level of this operation in the plan tree.

SYS.PLAN

System and Replication Tables 7-49

OPERATION TT_CHAR (31) NOT
NULL

Type of operation, one of:

TblLkSerialScan -- full table scan

RowLkSerialScan -- full table scan

TblLkTtreeScan -- ttree scan

RowLkTtreeScan -- ttree scan

TblLkHashScan -- hash lookup

RowLkHashScan -- hash lookup

TblLkRowidScan -- rowid lookup

RowLkRowidScan -- rowid lookup

TblLkUpdate -- updates one or more rows

RowLkUpdate -- updates one or more rows

TblLkDelete -- deletes one or more rows

RowLkDelete -- deletes one or more rows

TblLkInsert -- inserts one or more rows

RowLkInsert -- inserts one or more rows

TmpTtreeScanTmpHashScan -- create a
temporary index

NestedLoop [OuterJoin | SemiJoin] --
nested loop join (with optional outer join or
semi-join)

MergeJoin -- merge join

OrderBy -- sorts rows (requires extra temp
space)

SortedDistinct -- identifies distinct rows
from a sorted list (requires minimal extra space)

Distinct -- identifies distinct rows from an

unsorted list (requires extra temporary space)

SortedGroupBy -- identifies distinct groups
from a sorted list (requires minimal extra space)

GroupBy -- identifies distinct groups from an
unsorted list (requires extra temp space)

TmpTable -- materializes intermediate results
(requires extra temporary space)

TblLkUpdView -- updates a view based on
changes to detail table(s)

RowLkUpdView -- updates a view based on
changes to detail table(s)

OracleInsert -- flushes changes to Oracle

ZeroTblScan -- evaluates a predicate on a
single set of values (no scan required)

ViewUniqueMatchScan -- uniquely identifies
those view rows that need to be updated
(requires extra temp space

TBLNAME TT_CHAR (31) Name of table scanned at this step.

Column is NULL if no table is scanned.

Column name Type Description

SYS.PLAN

7-50 Oracle TimesTen In-Memory Database SQL Reference

IXNAME TT_CHAR (31) Name of index used at this step.

T-tree index names may have a "(D)" after the
name, which indicates a descending scan.

Column is NULL if no index is scanned.

PRED TT_VARCHAR (1024) Predicate applied during table or index scan or
join. Column is NULL if no predicate applies.

OTHERPRED TT_VARCHAR (1024) Predicate applied after table or index scan or
join. Column is NULL if no predicate applies.

Column name Type Description

SYS.PUBLIC_DEPENDENCY

System and Replication Tables 7-51

SYS.PUBLIC_DEPENDENCY

The PUBLIC_DEPENDENCY view describes dependencies to and from objects, by
object number (OBJECT_ID).

Columns

Column name Type Description

OBJECT_ID TT_BIGINT NOT
NULL

Object number.

REFERENCED_
OBJECT_ID

TT_BIGINT NOT
NULL

Referenced object (the parent object).

SYS.SEQUENCES

7-52 Oracle TimesTen In-Memory Database SQL Reference

SYS.SEQUENCES

The SEQUENCES table contains all the information about sequences. Data from the
system table is restored to the new data store during a CREATE SEQUENCE
statement.

Columns

Column name Type Description

NAME TT_CHAR (31) NOT NULL Sequence Name

OWNER TT_CHAR (31) NOT NULL Sequence Owner

MINVAL TT_BIGINT NOT NULL Minimum Value

MAXVAL TT_BIGINT NOT NULL Maximum Value

INCREMENT TT_BIGINT NOT NULL Increment value

CACHESIZE TT_BIGINT NOT NULL Number of sequence
number to be cached. For
internal TimesTen use.

LASTNUMBER TT_BIGINT NOT NULL Last number incremented.

SEQID TT_INTEGER NOT NULL on 32-bit
systems;

TT_BIGINT NOT NULL on 64-bit
systems

ID of the sequence row

CYCLE BINARY (1) NOT NULL Flag to indicate to wrap
around value.

IS_REPLICATED BINARY (1) NOT NULL 0 – Sequences are not
being replicated

1 – Sequences are being
replicated

REPACCESS TT_CHAR (1) NOT NULL Flag to indicate that
sequences cannot be
incremented on
subscriber only data
stores.

SYS.SESSION_ROLES

System and Replication Tables 7-53

SYS.SESSION_ROLES

This view returns no rows. The column definitions are the same as the column
definitions for the SYS. SESSION_ROLES view in the Oracle Database. See Oracle
Database Reference.

SYS.SYSTEM_PRIVILEGE_MAP

7-54 Oracle TimesTen In-Memory Database SQL Reference

SYS.SYSTEM_PRIVILEGE_MAP

The SYSTEM_PRIVILEGE_MAP table describes privilege type codes. This table can be
used to map privilege type numbers to type names.

Columns

Column name Type Description

PRIVILEGE TT_INTEGER NOT NULL Numeric privilege type code

NAME VARCHAR2 (40) INLINE
NOT NULL

Name of the type of privilege

PROPERTY TT_INTEGER NOT NULL Property flag of the privilege

SYS.TABLE_PRIVILEGE_MAP

System and Replication Tables 7-55

SYS.TABLE_PRIVILEGE_MAP

The TABLE_PRIVILEGE_MAP system table describes privilege type codes. This table
can be used to map privilege type numbers to type names.

Columns

Column name Type Description

PRIVILEGE TT_INTEGER NOT NULL Numeric privilege type code

NAME VARCHAR2 (40) INLINE
NOT NULL

Name of the type of privilege

SYS.TABLES

7-56 Oracle TimesTen In-Memory Database SQL Reference

SYS.TABLES

The TABLES table stores information about the tables in the data store, including the
name, the owner, the number of columns, the size of a row and the primary key (if
any). The TABLES table also stores information on system tables.

Specific column information is stored in the COLUMNS table.

Columns

Column name Type Description

TBLNAME TT_CHAR (31) NOT NULL Table name.

TBLOWNER TT_CHAR (31) NOT NULL Name of user who owns the
table.

OWNER TT_INTEGER NOT NULL Owner of table:

0 - TimesTen system table.

1 - User table.

NUMVARY TT_SMALLINT NOT NULL Number of varying-length
columns in table.

NUMNULL TT_SMALLINT NOT NULL Number of nullable columns in
table.

NUMCOLS TT_SMALLINT NOT NULL Number of columns in table.

LENGTH TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Length of in-line portion of each
row.

TBLID TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

TimesTen identifier for table.

NUMTUPS TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Table cardinality. This value is
precise only when no INSERT or
DELETE transactions are active.
The value includes uncommitted
inserts, but not uncommitted
deletes. Consequently, the value
of this field may be larger than
the actual table cardinality.

MAXTUPS TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Maximum table cardinality.

PRIMCNT TT_SMALLINT NOT NULL Number of columns in primary
key (0 if none).

PRIMCOLS BINARY (32) NOT NULL Array of 2-byte integer column
numbers of primary key, mapped
to binary.

CACHEFLAG BINARY (1) NOT NULL 1 - if the table is in a cache group,
0 otherwise.

SYS.TABLES

System and Replication Tables 7-57

XLAFLAG BINARY (1) NOT NULL If set, updates to this table should
be transmitted to the transaction
log API.

PXLAFLAG BINARY (1) NOT NULL If set, indicates that persistent
XLA has been enabled for this
particular user table.

CACHEGROUP TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

ID of cache group that this table
belongs to.

MVID TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

If the table is a VIEW, indicates
the ID of the associated row in the
VIEWS system table

MVIDS TT_VARCHAR(1024)
NOT INLINE

If the table is a VIEW detail table,
indicates the ID of the array of the
Ids of the rows in the VIEWS
system table of the materialized
views that reference this detail
table.

PERMLTBLID TT_INTEGER NOT NULL The associated permanent table's
ID.

REPNUMKEYCOLS TT_SMALLINT NOT NULL Number of columns in the
replication key described by
REPKEYCOLS

REPTSCOLNUM TT_SMALLINT NOT NULL Column number of the column
used for replication's
timestamp-based conflict
checking.

REPRETURNSERVICE TT_CHAR (1) NOT NULL Return service for this subscriber
with respect to this replication
element:

'C' - RETURN COMMIT

'R' - RETURN RECEIPT

'2' - RETURN TWOSAFE

'\0' - NO RETURN services

REPRETURNBYREQUEST BINARY (1) NOT NULL 0 - RETURN services are
provided unconditionally

1 - RETURN services are
provided only BY REQUEST. This
field is ignored if
REPRETURNSERVICE = '\0'

REPUSERID TT_BIGINT NOT NULL User-defined identifier for table
(set with -ttSetUserTableID
built-in function).

REPKEYCOLS BINARY (32) NOT NULL Column numbers used by
replication for unique
identification of a row.

(an array of 2-byte integers,
mapped to binary)

Column name Type Description

SYS.TABLES

7-58 Oracle TimesTen In-Memory Database SQL Reference

REPACCESS TT_CHAR (1) NOT NULL The access restrictions imposed
by replication:

'-' - no access permitted

's'- may be read by read-only
(SELECT) transactions

'r' - may be read by updating
transactions

'w' - may be updated

w => r and r => s.

REPTSUPDATERULE TT_CHAR (1) NOT NULL The rule for maintaining the TS_
COLUMN for a timestamp-based
conflict detector:

'\0' - rule not defined

'U' - BY USER

'S' - BY SYSTEM (default)

CACHETBLPOS TT_INTEGER NOT NULL Reserved for future use

Column name Type Description

SYS.TBL_STATS

System and Replication Tables 7-59

SYS.TBL_STATS

The TBL_STATS table stores the statistics for tables in the data store, namely the
number of rows in the table. No values are present if the statistics have not been
computed.

Column-specific statistics are stored in the COL_STATS table.

See "SYS.COL_STATS" on page 7-24.

Columns

Column name Type Description

TBLID TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT NULL
for 64-bit systems

TimesTen identifier of table.

NUMTUPS TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT NULL
for 64-bit systems

Number of rows in the table.

LASTSTATSUPDATE TT_CHAR (25) Time of most recent update of this
table, in the following format:

Day Mon DD HH:MM:SS YYYY

(e.g., Sun Jan 01 18:24:12 1995).

The string is NULL-terminated.

This column is NULL if no statistics
update has been performed on the
table.

SYS.TCOL_STATS

7-60 Oracle TimesTen In-Memory Database SQL Reference

SYS.TCOL_STATS

The TCOL_STATS table stores the statistics for table columns in temporary table
instances associated with active sessions. Statistics include the number of unique
values, number of nulls, number of rows and other information regarding the
distribution of column values. No values are present if statistics have not been
computed.

Columns

Column name Type Description

TBLID TT_INTEGER NOT
NULL for 32-bit
systems;

TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen table identifier.

COLNUM TT_SMALLINT NOT
NULL

Ordinal number of column in table (starting at 1).

INFO VARBINARY (4000000)
NOT NULL NOT
INLINE

Contains a binary representative of the column
value distribution information. See
ttOptUpdateStats for an explanation of the
distribution information stored in this column. A
text representation of this information can be
retrieved using ttOptGetColStats.

SYS.TINDEXES

System and Replication Tables 7-61

SYS.TINDEXES

The TINDEXES table stores information about the indexes in the temporary table
instances associated with active sessions, including the name, the type (range or hash),
the index key and whether the index is unique.

Columns

Column name Type Description

IXNAME TT_CHAR (31) NOT NULL Index name.

IXOWNER TT_CHAR (31) NOT NULL Name of index's owner.

IXID TT_INTEGER NOT NULL for
32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

TimesTen identifier of index.

TBLID TT_INTEGER NOT NULL for
32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

TimesTen identifier of index's
table.

IXTYPE TT_INTEGER NOT NULL Index type:

0 - hash index.

1 - range index.

ISUNIQUE BINARY (1) NOT NULL Uniqueness:

0 - nonunique index.

1 - unique index.

ISPRIMARY BINARY(1) NOT NULL Primary key:

0 - not a primary key for table.

1 - primary key for table.

USETMPHEAP TT_SMALLINT NOT NULL

KEYCNT TT_SMALLINT NOT NULL Number of columns in the
index key.

KEYCOLS BINARY (32) NOT NULL Array of 2-byte integer column
numbers of index key, mapped
to binary.

PAGESPARAM TT_INTEGER NOT NULL for
32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Number of pages specified for
hash index.

NLSSORTID TT_INTEGER NOT NULL For internal use only.

NLSSORTPARM VARBINARY(1000) NOT
INLINE

For internal use only.

NLSSORTSTR TT_VARCHAR(200)
NOT INLINE

For internal use only.

NLSSORTBUF

SIZE

TT_SMALLINT For internal use only.

SYS.TINDEXES

7-62 Oracle TimesTen In-Memory Database SQL Reference

NLSSORTMAXSIZE TT_SMALLINT For internal use only.

Column name Type Description

SYS.TRANSACTION_LOG_API

System and Replication Tables 7-63

SYS.TRANSACTION_LOG_API

The TRANSACTION_LOG_API table keeps track of the persistent Transaction Log
API bookmarks. Each row in the system table corresponds to a persistent bookmark.
Each persistent bookmark has a text identifier associated with it, which is used to keep
track of the bookmark.

These columns are for internal use: REPLICATED, ID_A, ID_B, CTN_HIGH_A, CTN_
HIGH_B, CTN_LOW_A, CTN_LOW_B.

Columns

Column name Type Description

ID TT_CHAR (31) NOT NULL A text tag identifier used to keep
track of the bookmark.

READLSNHIGH TT_INTEGER NOT NULL The high value of the read log
record to which this bookmark
points.

READLSNLOW TT_INTEGER NOT NULL The low value of the read log
record to which this bookmark
points.

PURGELSNHIGH TT_INTEGER NOT NULL The high value of the lowest LSN
required by this bookmark.

PURGELSNLOW TT_INTEGER NOT NULL The low value of the lowest LSN
required by this bookmark.

PID TT_INTEGER NOT NULL The process ID of the process to
last open the XLA bookmark.

INUSE BINARY (1) NOT NULL Bookmark being used by any
persistent Transaction Log API
connection.

REPLICATED BINARY(1) Used for a replicated bookmark

COUNTER TT_BIGINT Used for a replicated bookmark

COUNTER_A TT_BIGINT Used for a replicated bookmark

COUNTER_B TT_BIGINT Used for a replicated bookmark

CTN_HIGH_A TT_INTEGER Used for a replicated bookmark

CTN_LOW_A TT_INTEGER Used for a replicated bookmark

CTN_HIGH_B TT_INTEGER Used for a replicated bookmark

CTN_LOW_B TT_INTEGER Used for a replicated bookmark

SYS.TTABLES

7-64 Oracle TimesTen In-Memory Database SQL Reference

SYS.TTABLES

The TTABLES table stores information about temporary table instances associated
with active sessions, including the name, the owner, the number of columns, the size
of a row and the primary key (if any).

Specific column information is stored in the COLUMNS table.

Columns

Column name Type Descriptions

TBLNAME TT_CHAR (31) NOT NULL Table name.

TBLOWNER TT_CHAR (31) NOT NULL Name of user who owns the
table.

OWNER TT_INTEGER NOT NULL Owner of table:

0 - TimesTen system table.

1 - User table.

NUMVARY TT_SMALLINT NOT NULL Number of varying-length
columns in table.

NUMNULL TT_SMALLINT NOT NULL Number of nullable columns in
table.

NUMCOLS TT_SMALLINT NOT NULL Number of columns in table.

LENGTH TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Length of in-line portion of each
row.

TBLID TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

TimesTen identifier for table.

NUMTUPS TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Table cardinality. This value is
precise only when no INSERT or
DELETE transactions are active.
The value includes uncommitted
inserts, but not uncommitted
deletes. Consequently, the value
of this field may be larger than
the actual table cardinality.

MAXTUPS TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Maximum table cardinality.

PRIMCNT TT_SMALLINT NOT NULL Number of columns in primary
key (0 if none).

PRIMCOLS BINARY (32) NOT NULL Array of 2-byte integer column
numbers of primary key, mapped
to binary.

CACHEFLAG BINARY(1) NOT NULL 1 - if the table is in a cache group,
0 otherwise.

SYS.TTABLES

System and Replication Tables 7-65

XLAFLAG BINARY(1) NOT NULL If set, updates to this table should
be transmitted to the transaction
log API.

PXLAFLAG BINARY(1) NOT NULL If set, indicates that persistent
XLA has been enabled for this
particular user table.

CACHEGROUP TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

Id of cache group that this table
belongs to.

MVID TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL for
64-bit systems

If the table is a VIEW, indicates
the ID of the associated row in the
VIEWS system table

MVIDS TT_VARCHAR(1024)
NOT INLINE

If the table is a VIEW detail table,
indicates the ID of the array of the
Ids of the rows in the VIEWS
system table of the materialized
views that reference this detail
table.

PERMLTBLID TT_INTEGER NOT NULL The associated permanent table's
ID.

REPNUMKEYCOLS TT_SMALLINT NOT NULL Number of columns in the
replication key described by
REPKEYCOLS

REPTSCOLNUM TT_SMALLINT NOT NULL Column number of the column
used for replication's
timestamp-based conflict
checking.

REPRETURNSERVICE TT_CHAR (1) NOT NULL Return service for this subscriber
with respect to this replication
element:

'C' - RETURN COMMIT

'R' - RETURN RECEIPT

'2' - RETURN TWOSAFE

'\0' - NO RETURN services

REPRETURNBY

REQUEST

BINARY (1) NOT NULL 0 - RETURN services are
provided unconditionally

1 - RETURN services are
provided only BY REQUEST. This
field is ignored if
REPRETURNSERVICE = '\0'

REPUSERID TT_BIGINT NOT NULL User-defined identifier for table
(set with -ttSetUserTableID
built-in function).

REPKEYCOLS BINARY (32) NOT NULL Column numbers used by
replication for unique
identification of a row.

(an array of 2-byte integers,
mapped to binary)

Column name Type Descriptions

SYS.TTABLES

7-66 Oracle TimesTen In-Memory Database SQL Reference

REPACCESS TT_CHAR (1) NOT NULL The access restrictions imposed
by replication:

'-' - no access permitted

's'- may be read by read-only
(SELECT) transactions

'r' - may be read by updating
transactions

'w' - may be updated

w => r and r => s.

REPTSUPDATERULE TT_CHAR (1) NOT NULL The rule for maintaining the TS_
COLUMN for a timestamp-based
conflict detector:

'\0' - rule not defined

'U' - BY USER

'S' - BY SYSTEM (default)

Column name Type Descriptions

SYS.TTBL_STATS

System and Replication Tables 7-67

SYS.TTBL_STATS

The TTBL_STATS table stores the statistics for temporary table instances associated
with active sessions, namely the number of rows in the table. No values are present if
the statistics have not been computed.

Column-specific statistics are stored in the COL_STATS table.

See "SYS.COL_STATS" on page 7-24.

Columns

Column name Type Description

TBLID TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL
for 64-bit systems

TimesTen identifier of table.

NUMTUPS TT_INTEGER NOT NULL
for 32-bit systems;

TT_BIGINT NOT NULL
for 64-bit systems

Number of rows in the table.

LASTSTATSUPDATE TT_CHAR (25) Time of most recent update of this
table, in the following format:

Day Mon DD HH:MM:SS YYYY

(e.g., Sun Jan 01 18:24:12 1995).

The string is NULL-terminated.

This column is NULL if no statistics
update has been performed on the
table.

SYS.USER_ARGUMENTS

7-68 Oracle TimesTen In-Memory Database SQL Reference

SYS.USER_ARGUMENTS

USER_ARGUMENTS describes the arguments of the procedures and functions that
are owned by the current user. This view does not display the OWNER column. See
"SYS.ALL_ARGUMENTS" on page 7-4 for column descriptions.

SYS.USER_COL_PRIVS

System and Replication Tables 7-69

SYS.USER_COL_PRIVS

This view returns no rows. The column definitions are the same as the column
definitions for the SYS. USER_COL_PRIVS view in the Oracle Database. See Oracle
Database Reference.

Related views
■ SYS.ALL_COL_PRIVS returns no rows.

■ SYS.DBA_COL_PRIVS returns no rows.

SYS.USER_DEPENDENCIES

7-70 Oracle TimesTen In-Memory Database SQL Reference

SYS.USER_DEPENDENCIES

USER_DEPENDENCIES describes dependencies between objects that are owned by
the current user. This view does not display the OWNER column. See "SYS.ALL_
DEPENDENCIES" on page 7-8 for column descriptions.

SYS.USER_ERRORS

System and Replication Tables 7-71

SYS.USER_ERRORS

USER_ERRORS describes the current errors on the stored objects that are owned by
the current user. This view does not display the OWNER column. See "SYS.ALL_
ERRORS" on page 7-10 for column descriptions.

SYS.USER_IDENTIFIERS

7-72 Oracle TimesTen In-Memory Database SQL Reference

SYS.USER_IDENTIFIERS

USER_IDENTIFIERS describes the identifiers for all stored objects that are owned by
the current user. This view does not display the OWNER column. See "SYS.ALL_
IDENTIFIERS" on page 7-11 for column descriptions.

SYS.USER_OBJECTS

System and Replication Tables 7-73

SYS.USER_OBJECTS

USER_OBJECTS describes all objects owned by the current user. This view does not
display the OWNER column. See "SYS.ALL_OBJECTS" on page 7-12 for column
descriptions.

SYS.USER_OBJECT_SIZE

7-74 Oracle TimesTen In-Memory Database SQL Reference

SYS.USER_OBJECT_SIZE

USER_OBJECT_SIZE describes the size, in bytes, of PL/SQL objects owned by the
current user. This view does not display the OWNER column. See "SYS.DBA_
OBJECT_SIZE" on page 7-32 for column descriptions.

SYS.USER_PLSQL_OBJECT_SETTINGS

System and Replication Tables 7-75

SYS.USER_PLSQL_OBJECT_SETTINGS

USER_PLSQL_OBJECT_SETTINGS describes compiler settings for all stored objects
that are owned by the current user. This view does not display the OWNER column.
See "SYS.DBA_PLSQL_OBJECT_SETTINGS" on page 7-33 for column descriptions.

SYS.USER_PROCEDURES

7-76 Oracle TimesTen In-Memory Database SQL Reference

SYS.USER_PROCEDURES

USER_PROCEDURES describes all functions and procedures, along with associated
properties that are owned by the current user. This view does not display the OWNER
column. See "SYS.ALL_PROCEDURES" on page 7-14 for column descriptions.

SYS.USER_SOURCE

System and Replication Tables 7-77

SYS.USER_SOURCE

USER_SOURCE describes the text source of the stored objects that are owned by the
current user. This view does not display the OWNER column. See "SYS.ALL_
SOURCE" on page 7-16 for column descriptions.

SYS.USER_STORED_SETTINGS

7-78 Oracle TimesTen In-Memory Database SQL Reference

SYS.USER_STORED_SETTINGS

USER_STORED_SETTINGS describes the persistent parameter settings for stored
PL/SQL units, but shows only information about PL/SQL units owned by the current
user. See "SYS.ALL_STORED_SETTINGS" on page 7-17 for column descriptions.

SYS.USER_SYS_PRIVS

System and Replication Tables 7-79

SYS.USER_SYS_PRIVS

The USER_SYS_PRIVS view lists the system privileges of the current user.

Related views
SYS.DBA_SYS_PRIVS lists the system privileges granted to all users and to PUBLIC.

Columns

Column Type Description

USERNAME VARCHAR2(30) NOT NULL User name

PRIVILEGE VARCHAR2(40) NOT NULL Privilege name

ADMIN_OPTION VARCHAR2(3) NOT NULL Indicates whether the user can
grant the privilege. Possible
values are YES and NO.

The value is YES only for the
ADMIN privilege.

SYS.USER_TAB_PRIVS

7-80 Oracle TimesTen In-Memory Database SQL Reference

SYS.USER_TAB_PRIVS

The USER_TAB_PRIVS view lists the object privileges granted to the current user, the
object privileges granted by the current user, and the list of object privileges granted
for objects owned by the current user.

Related views
■ SYS.ALL_TAB_PRIVS lists the object privileges granted to the current user, the

object privileges granted by the current user, the list of object privileges granted
for objects owned by the current user and the object privileges granted to PUBLIC.

■ SYS.DBA_TAB_PRIVS lists the object privileges granted to all users and to
PUBLIC.

Columns

Column Type Description

GRANTEE VARCHAR2(30) NOT NULL Name of the user with the privilege

OWNER VARCHAR2(31) NOT NULL Object owner

TABLE_NAME VARCHAR2(31) NOT NULL Object name

GRANTOR VARCHAR2(30) NOT NULL Name of the user who granted the
privilege

PRIVILEGE VARCHAR2(40) NOT NULL Privilege name

GRANTABLE VARCHAR2(3) NOT NULL Value is always NO.

HIERARCHY VARCHAR2(3) NOT NULL Value is always NO.

SYS.USER_USERS

System and Replication Tables 7-81

SYS.USER_USERS

The USER_USERS view describes the current user.

Related views
■ SYS.ALL_USERS lists all users of the database that are accessible to the current

user.

■ SYS.DBA_USERS describes all users of the database.

Columns

Column Type Description

USERNAME VARCHAR2(30) NOT NULL Name of the user

USER_ID TT_INTEGER NOT NULL ID number of the user

ACCOUNT_STATUS VARCHAR2(32) NOT NULL Value is OPEN.

LOCK_DATE TT_TIMESTAMP Value is NULL.

EXPIRY_DATE TT_TIMESTAMP Value is NULL.

DEFAULT_TABLESPACE VARCHAR2(30) NOT NULL Value is USERS.

TEMPORARY_TABLESPACE VARCHAR2(30) NOT NULL Value is TEMP.

CREATED TT_TIMESTAMP NOT NULL Date when the user was
created.

INITIAL_RSRC_
CONSUMER_GROUP

VARCHAR2(30) Value is always NULL.

EXTERNAL_NAME VARCHAR2(4000) Value is always NULL.

SYS.VIEWS

7-82 Oracle TimesTen In-Memory Database SQL Reference

SYS.VIEWS

The VIEWS table stores the statistics for views in the data store.

Columns

Column name Type Description

NAME TT_CHAR(31) NOT NULL View name.

OWNER TT_CHAR(31) NOT NULL View owner.

ID TT_INTEGER NOT NULL for 32-bit
systems;

TT_BIGINT NOT NULL for 64-bit
systems

ID of the view row.

TBLID TT_INTEGER NOT NULL for 32-bit
systems;

TT_BIGINT NOT NULL for 64-bit
systems

ID of the view.

SQL TT_VARCHAR (409600) NOT NULL
NOT INLINE

View select statement.

REFRESH_INTERVAL TT_BIGINT Refresh interval in seconds

REFRESH_START TT_TIMESTAMP The start time of the most
recent refresh

REFRESH_END TT_TIMESTAMP The ending time of the
most recent refresh

REFRESH_ROWCNT TT_INTEGER Number of rows refreshed
in the most recent refresh

SYS.XLASUBSCRIPTIONS

System and Replication Tables 7-83

SYS.XLASUBSCRIPTIONS

The XLASUBSCRIPTIONS table stores information needed for table subscriptions at
the bookmark level.

Columns

Column name Type Description

BOOKMARK TT_CHAR (31)
NOT NULL

Bookmark name.

TBLNAME TT_CHAR (31)
NOT NULL

The name of the subscribed table.

TBLOWNER TT_CHAR (31)
NOT NULL

Owner of the subscribed table.

TTREP.REPELEMENTS

7-84 Oracle TimesTen In-Memory Database SQL Reference

TTREP.REPELEMENTS

The TTREP.REPELEMENTS table describes elements in a replication scheme. In this
release, the only elements recorded are tables.

Columns

Column name Type Description

REPLICATION_

NAME

TT_CHAR(31)
NOT NULL

Name for a replication scheme.

REPLICATION_

OWNER

TT_CHAR(31)
NOT NULL

The replication scheme's owner.

ELEMENT_NAME TT_CHAR(31)
NOT NULL

The replication name for this element, logically
different from the DS_OBJ_NAME of the
underlying data base object. For example, the
ELEMENT_NAME for a replicated table may
differ from the table name. This name must be
unique in a replication scheme.

ELEMENT_TYPE TT_CHAR (1) NOT
NULL

The type of this replication element:

'T' – Table

'D' – Data store

'S' – Sequence

OWNED_BY_

SYSTEM

BINARY (1) NOT
NULL

0x01 - Element is maintained by the system and
cannot be directly referenced by SQL
statements.

0x00 - Element is defined and maintained by a
user.

MASTER_ID TT_BIGINT NOT
NULL

The TT_STORE_ID for the master or propagator
of this element.

OLD_MASTER_ID TT_BIGINT NOT
NULL

The TT_STORE_ID for the immediately
preceding MASTER for this element. -1 if none.

IS_PROPAGATOR BINARY (1) NOT
NULL

0 if the MASTER_ID identifies a true MASTER
store. 1 if it, in fact, identifies a -PROPAGATOR.

DS_OBJ_NAME TT_CHAR(31)
NOT NULL

If this replication refers to a single, underlying
data base object, then this is its name.
Specifically, it is the name of the replicated table
if ELEMENT_TYPE = 'T'.

it is NULL if ELEMENT

_TYPE = 'D'. DS_OBJ_OWNER._DS_OBJ_
NAME need not be unique in a replication
scheme, but each occurrence must be associated
with a distinct ELEMENT_NAME.

DS_OBJ_OWNER TT_CHAR(31)
NOT NULL

The owner of the replication element – if
defined. NULL otherwise. This is always the
owner of the table. DS_OBJ_OWNER._DS_

OBJ_NAME need not be unique in a replication
scheme, but each occurrence must be associated
with a distinct ELEMENT_NAME.

TTREP.REPELEMENTS

System and Replication Tables 7-85

DS_OBJ_ID TT_INTEGER If the ELEMENT_TYPE = 'T':

Table ID - Table is in the owning (master or
propagator) data store.

1- Table is in the subscriber data store.

If the ELEMENT_TYPE = 'D':

0 - Data store is a master or propagator.

1- Data store is a subscriber.

NULL - If the store has been migrated, restored
or upgraded from an earlier version.

DURABLE_

TRANSMIT

BINARY (1) NOT
NULL

0 - Transactions are made durable before they
are transmitted (default).

1 - Transactions are not made durable before
they are transmitted.

CONFLICT_CHECKS BINARY (8) NOT
NULL

A bit map indicating which conflict detectors
are enabled. This field is
either: 0x0000000000000000 (no configured
conflict detector, the default)
or: 0x0000000000000001 (ROW TIMESTAMP
conflict detector).

TS_COLUMN_NAME TT_CHAR (31) The name of the timestamp column specified in
the CheckConflicts portion of a CREATE
MATERIALIZED VIEW statement. This column
must be of type BINARY(8) and permit NULL
values.

TS_EXCEPTION_

ACTION

TT_CHAR (1) NOT
NULL

The action to take upon detecting a conflict by a
timestamp-based detector. The action is
specified by the ON EXCEPTION clause in the
CheckConflicts portion of a CREATE
MATERIALIZED VIEW statement. They appear
in this column as:

'\0' - action not defined

'N' - NO ACTION

'R' - rollback transaction (default)

TS_UPDATE_RULE TT_CHAR (1) NOT
NULL

The rule for maintaining the timestamp for a
timestamp-based conflict detector:

'\0'- rule not defined

'U' - by user

'S' - by system (default)

TS_REPORT_FILE TT_VARCHAR
(1000) NOT
INLINE

The name of the file to which the replication
agent reports timestamp conflicts.

This file is specified by the REPORT TO clause
in the CheckConflicts portion of a CREATE
MATERIALIZED VIEW statement.

IS_MASTER_

PROPAGATOR

BINARY (1) NOT
NULL

Indicates if the store is both a master and a
propagator.

EXTERNAL_DB TT_CHAR (1)

Column name Type Description

TTREP.REPELEMENTS

7-86 Oracle TimesTen In-Memory Database SQL Reference

REPORT_FORMAT TT_CHAR(1) The report format for the replication conflict
file:

NULL - No report file specified, therefore no
format

'S' - Standard format

'X' - XML format

Column name Type Description

TTREP.REPLICATIONS

System and Replication Tables 7-87

TTREP.REPLICATIONS

The REPLICATIONS table collects together general information about all replication
schemes in which the local store participates. The table indicates whether a replication
scheme was created by ttRepAdmin -upgrade or by a CREATE MATERIALIZED
VIEW statement.

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR(31)
NOT NULL

Name for a replication scheme.

REPLICATION_OWNER TT_CHAR (31)
NOT NULL

The replication scheme's owner.

REPLICATION_ORIGIN TT_CHAR (1)
NOT NULL

'U' - created by ttRepAdmin -upgrade

'C' - created by CREATE REPLICATION (or
a ttRepAdmin command that was
translated into CREATE REPLICATION).

REPLICATION_VERSION TT_INTEGER
NOT NULL

The number of ALTER REPLICATION
commands applied to this replication
scheme after its initial creation.

SOURCE_STORE_ID_ALIGN TT_INTEGER
NOT NULL

Used internally to properly align the
SOURCE_STORE_ID column.

SOURCE_STORE_ID TT_BIGINT NOT
NULL

If this replication scheme was created by
restoring it from a backup, the store ID of
the store from which this replication
scheme was backed up and restored.
otherwise -1 (the invalid store ID).

CHECKSUM TT_BIGINT Indicates that the replication scheme has
been updated.

TTREP.REPNETWORK

7-88 Oracle TimesTen In-Memory Database SQL Reference

TTREP.REPNETWORK

The REPNETWORK table stores information on interfaces used by the replication
agent when two peers communicate. Each row represents a communication path
between master and subscriber and describes either the sending or receiving interface
used.

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR (31) NOT
NULL

Name of the replication scheme.

REPLICATION_OWNER TT_CHAR (31) NOT
NULL

The owner of the replication scheme.

TT_STORE_ID TT_BIGINT NOT
NULL

Unique, system-generated identifier for a
HOST_NAME/TT_STORE_NAME pair.

SUBSCRIBER_ID TT_BIGINT NOT
NULL

The identifier for a store that subscribes to
at least one replication element owned by
TT_STORE_ID.

HOST_NAME TT_VARCHAR (200)
NOT NULL NOT
INLINE

Name associated with the network
interface.

PRIORITY TT_INTEGER NOT
NULL

Integer from 1-99 that denotes the priority
of the IP address.

INTERFACE TT_CHAR (1) Indicates whether the HOST_NAME
refers to an interface on the sending side
('S') or on the receiving side ('R').

TTREP.REPPEERS

System and Replication Tables 7-89

TTREP.REPPEERS

The REPPEERS table displays status information about the stores in a replication
scheme. After the initial upgrade, the REPPEERS table contains peer information only
about the local store and other stores that it transmits updates to.

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR(31)
NOT NULL

Name for a replication scheme.

REPLICATION_OWNER TT_CHAR(31)
NOT NULL

The replication scheme's owner

TT_STORE_ID TT_BIGINT NOT
NULL

Unique, system-generated identifier for a
HOST_NAME/TT_STORE_NAME pair.

SUBSCRIBER_ID TT_BIGINT NOT
NULL

The identifier for a store that subscribes to at
least one replication element owned by TT_
STORE_ID. If a valid ID then this record
describes the status of TT_STORE_ID/

SUBSCRIBER_ID as a sender/

subscriber pair.

COMMIT_TIMESTAMP TT_INTEGER This field and COMMIT_SEQNUM together
store the value of the Commit Ticket Number
of the refreshed transaction that the
subscriber has just committed.

COMMIT_SEQNUM TT_INTEGER This field and COMMIT_TIMESTAMP
together store the value of the Commit Ticket
Number of the refreshed transaction that the
subscriber has just committed.

SENDLSNHIGH TT_INTEGER The log file number of the highest TT_
STORE_ID log sequence number sent to and
acknowledged by SUBSCRIBER_ID.

SENDLSNLOW TT_INTEGER The log file offset of the highest TT_STORE_
ID log sequence number sent to and
acknowledged by SUBSCRIBER_ID.

REPTABLESLSNHIGH TT_INTEGER For TimesTen internal use.

REPTABLESLSNLOW TT_INTEGER For TimesTen internal use.

TTREP.REPPEERS

7-90 Oracle TimesTen In-Memory Database SQL Reference

STATE TT_INTEGER The state of replication kept by TT_STORE_
ID with respect to this SUBSCRIBER_ID:

0 - START: Replication is in the active state
and all log updates are retained until they
have been applied at SUBSCRIBER_ID.

1 - PAUSE: Replication is not in the active
state but all log updates are retained until
they have been applied at SUBSCRIBER_ID.

2 - STOP: Replication is not in the active state
and log updates are not retained.

4 - FAILED: Replication is not in the active
state, log updates are not retained, and the
log updates that need to be retained exceed
the user defined threshold -
TTREP.REPSTORES.FAIL_

THRESHOLD. When this state has been
communicated to SUBSCRIBER_ID it is
changed to STOP.

TIMESEND TT_INTEGER The timestamp (in seconds) for the time of
the last known successful transmission from
TT_STORE_ID to SUBSCRIBER_ID.

TIMERECV TT_INTEGER The timestamp (in seconds) for the time TT_
STORE_ID last received a transmission from
SUBSCRIBER_ID.

PROTOCOL TT_INTEGER A number in the range 0 to 5 indicating the
protocol level that replication uses for
communication between TT_STORE_ID and
SUBSCRIBER_ID. A higher number indicates
a newer protocol.

LATENCY BINARY_DOUBLE An estimate of the time interval (in seconds)
from the commit of a transaction on TT_
STORE_ID to its receipt of acknowledgement
that it has been applied at the subscriber
identified by SUBSCRIBER_ID.

TPS TT_INTEGER An estimate of the number of transactions
per second that are committed on TT_
STORE_ID and successfully received by the
subscriber identified by SUBSCRIBER_ID.

RECSPERSEC TT_INTEGER An estimate of the number of records per
second retrieved by the subscriber identified
by SUBSCRIBER_ID from the store TT_
STORE_ID.

DISKLESS_
UNINITIALIZED

BINARY (1) 0 if TT_STORE_ID is either disk-based or is
diskless and has not initialized
SUBSCRIBER_ID for diskless replication. 1
otherwise.

CTNLISTINDEX TT_INTEGER For internal use by the replication agent.

Column name Type Description

TTREP.REPSTORES

System and Replication Tables 7-91

TTREP.REPSTORES

The REPSTORES table lists the replication attributes of store's that participate in every
TimesTen replication scheme in which the local store participates. Each store is
identified by a unique TT_STORE_ID that TimesTen replication assigns to it. A TT_
STORE_ID may appear at most once for a given replication scheme, but may appear
multiple times in the REPSTORES table. Various replication schemes may define
different replication store attributes for the same store.

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR(31) NOT
NULL

Name for a replication scheme.

REPLICATION_OWNER TT_CHAR(31) NOT
NULL

The replication scheme's owner

TT_STORE_ID TT_BIGINT NOT
NULL

Unique, system-generated identifier
for a HOST_NAME/TT_STORE_
NAME pair.

PEER_TIMEOUT TT_INTEGER NOT
NULL

The number of seconds for this store to
wait for a subscriber response before
trying to reconnect.

FAIL_THRESHOLD TT_INTEGER NOT
NULL

The number of log files whose
accumulation makes this store, in this
replication scheme, mark subscribers
"failed." (See the STATE field.)

HEARTBEAT_FACTOR BINARY_DOUBLE A multiplier of the current heartbeat
frequency.

TTREP.REPSUBSCRIPTIONS

7-92 Oracle TimesTen In-Memory Database SQL Reference

TTREP.REPSUBSCRIPTIONS

The REPSBUBSCRIPTIONS registers each subscribing store that maintains a secondary
copy of a replication element.

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR (31)
NOT NULL

Name for a replication scheme.

REPLICATION_OWNER TT_CHAR (31)
NOT NULL

The replication scheme's owner.

ELEMENT_NAME TT_CHAR(31)
NOT NULL

The replication name for this element,
logically distinct from the name of an
underlying data store object.

SUBSCRIBER_ID TT_BIGINT NOT
NULL

The TT_STORE_ID for a subscriber to this
element. A subscriber may not subscribe
more than once to a replication element in a
replication scheme.

RETURN_SERVICE TT_CHAR (1)
NOT NULL

Return service for this subscriber with
respect to this replication element:

'C' - RETURN COMMIT

'R' - RETURN RECEIPT

'\0' - No RETURN services

'2' - RETURN TWOSAFE

RETURN_BY_REQUEST BINARY(1) NOT
NULL

The type of return services for this element.

0 - RETURN services are provided
unconditionally

1 - RETURN services are provided only BY
REQUEST

This field is ignored if RETURN_SERVICES
= '\0'.

PRIVILEGES TT_CHAR (1)
NOT NULL

Privileges for this subscriber with respect to
this replication element:

'\0' - no special subscriber privileges

TTREP.REPTABLES

System and Replication Tables 7-93

TTREP.REPTABLES

The REPTABLES table contains subscriber-relative information about each of the
columns in each table transmitted to a subscriber. This information appears in
REPTABLES in the owner (transmitter) store but not in REPTABLES in the subscriber
store.

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR (31) NOT
NULL

Name for a replication scheme.

REPLICATION_OWNER TT_CHAR (31) NOT
NULL

The replication scheme's owner.

ELEMENT_NAME TT_CHAR (31) NOT
NULL

The replication name for this
element, logically different from
the REF_NAME of the underlying
data base object. For example, the
ELEMENT_NAME for a replicated
table may differ from the table
name. This name must be unique
in a replication scheme.

SUBSCRIBER_ID TT_BIGINT NOT
NULL

The TT_STORE_ID for a
subscriber to this element. A
subscriber may not subscribe more
than once to a replication element
in a replication scheme.

COLNUM TT_SMALLINT NOT
NULL

Ordinal number of column in table
(starting at 1).

COLOPTIONS BINARY (1) NOT
NULL

Column specification flags:

0x01 - column is in a primary key.

0x02 - column value is
varying-length (VARCHAR[2],

NVARCHAR[2], VARBINARY)

0x04 - column value can be NULL.

0x08 - column values are unique.

TTREP.REPTABLES

7-94 Oracle TimesTen In-Memory Database SQL Reference

COLTYPE TT_INTEGER NOT
NULL

Data type of column

1 TT_CHAR

2 TT_DECIMAL

3 TT_DECIMAL

4 TT_INTEGER

5 TT_SMALLINT

6 BINARY_FLOAT

7 BINARY_FLOAT

8 BINARY_DOUBLE

9 TT_DATE

10 TIME

11 TT_TIMESTAMP

12 TT_VARCHAR

13 DATE

14 TIMESTAMP

15 NUMBER

16 CHAR

17 VARCHAR2

18 NCHAR

19 NVARCHAR2

- 1 LONGVARCHAR

- 2 binary

- 3 VARBINARY

- 4 LONGVARBINARY

- 5 TT_BIGINT

- 6 TT_TINYINT

- 7 BIT

- 8 WCHAR

- 9 WVARCHAR

- 10 WLONGVARCHAR

Note: If you are using TimesTen
type mode, for information on
COLTYPE, refer to documentation
from previous releases of
TimesTen. For information on
TimesTen type mode, see
"TimesTen type mode (backward
compatibility)" on page 1-32.

COLLEN TT_INTEGER NOT
NULL

Length of the column

(maximum length for
varying-length

columns).

Column name Type Description

TTREP.REPTABLES

System and Replication Tables 7-95

COLPRECISION TT_INTEGER NOT
NULL

The number of digits in a
fixed-point number, or the number
of digits in the mantissa of a
floating point number

COLSCALE TT_INTEGER NOT
NULL

A non-negative number. A scale of
0 indicates an integer with no
digits to the right of a decimal
point. For a scale of S, the exact
numeric value is the integer value
of the significant digits multiplied
by:

10 (exp -S).

PTNNUM TT_SMALLINT NOT
NULL

The table partition that contains
the column.

PTNCOLOFF TT_INTEGER NOT
NULL

The offset of the column within the
partition.

PTNNULLOFF TT_INTEGER NOT
NULL

The offset to the null byte within
the partition.

REPKEYPOSITION TT_SMALLINT NOT
NULL

The ordinal position of this
column in the replication key
described by the REPKEYCOLS.

TS_EXCEPTION_ACTION TT_CHAR (1) NOT
NULL

The action to take upon detecting a
conflict by a timestamp-based
detector. The action is specified by
the ON EXCEPTION clause in the
CheckConflicts portion of a
CREATE MATERIALIZED VIEW
statement. They appear in this
column as:

\0' - action not defined

'N' - NO ACTION

'R' - ROLLBACK WORK (default)

COLNAME TT_CHAR (31) Column name

Column name Type Description

TTREP.TTSTORES

7-96 Oracle TimesTen In-Memory Database SQL Reference

TTREP.TTSTORES

The TTSTORES table maps a store's pair to a unique TT_STORE_ID. The TT_STORE_
ID is a foreign key for all other replication schema tables that refer to a store in a
replication scheme.

Columns

Column name Type Description

TT_STORE_ID TT_BIGINT NOT NULL Unique, system-generated
identifier for a HOST_NAME/TT_
STORE_NAME pair.

HOST_NAME TT_VARCHAR (200)
NOT NULL NOT
INLINE

Name of the participating host
node.

TT_STORE_NAME TT_VARCHAR (200)
NOT NULL NOT
INLINE

The name for this data store.

IS_LOCAL_STORE BINARY (1) NOT NULL 1 if this TT_STORE_ID -represents
the local data store. 0 -otherwise.

MAJOR_RELEASE TT_INTEGER NOT
NULL

The major release part of this data
store's TimesTen release number. 0
indicates the current release.

MINOR_RELEASE TT_INTEGER NOT
NULL

The minor release part of this
store's TimesTen release number.

REP_SCHEMA_VERSION TT_INTEGER NOT
NULL

The version of the replication
schema in this data store.

REP_PORT_NUMBER TT_INTEGER NOT
NULL

The port number that replication
uses to communicate with this
data store. 0 if automatically
assigned.

RRPOLICY TT_CHAR (1) Subscribers affected by return
service failure policy. Legal values
are:

'S' - Single subscriber

'A' - All subscribers

'N' No policy

RRTRIGGER TT_INTEGER Number of timeouts before the
return service failure policy is
triggered

RRRESUME_LATENCY TT_INTEGER Resume latency in milliseconds.

RRDURABLE BINARY (1) Durable commits on RETURN
RECEIPT failure. Legal values are:

1 - True

0 - False

RET_LOCAL_ACTION TT_CHAR (1) Default commit behavior for
RETURN TWOSAFE transactions:

'C' - COMMIT

'N' - NO ACTION

TTREP.TTSTORES

System and Replication Tables 7-97

RET_WAIT_TIME TT_INTEGER The defaulted timeout value for
RETURN TWOSAFE transactions.

RET_WHEN_STOPPED BINARY (1) If either the replication agent for
the data store is stopped or if the
data store is used as master and
the replication agent for the data
store is set to STOP, then if the
value of the column is a non-zero
value, return services for the data
store are suspended.

COMPRESSION TT_CHAR (1) If Y, indicates compression of all
data from the data store.

MASTER TT_CHAR (1) Active or standby data store or
subscriber data store. Values are:

'Y' - active or standby store

'N' - subscriber store

NULL - all other cases.

ROLE TT_CHAR (1) Role is one of:

'A' - active

'S' - standby

NULL - all other cases.

TS TT_BIGINT The timestamp at which the
specified role change was made.

CONFLICT_REPORT_

STOP

TT_INTEGER The threshold at which conflict
reporting is stopped.

CONFLICT_REPORT_

RESTART

TT_INTEGER The rate at which conflict reporting
is resumed.

CONFLICT_REPORT_

FLUSH_METHOD

TT_INTEGER Reserved for future use.

TABLECHECK TT_CHAR (1) One of the following values:

E (exact) - The table structures on
the master and subscriber data
stores must be identical for
replication to occur.

R (relaxed) - Replication can occur
between master and subscriber if a
relaxed table check has been
passed. This means that the
number of columns and column
data types match for the tables in
the master and subscriber data
stores.

NULL (default) - all other cases

Column name Type Description

TTREP.TTSTORES

7-98 Oracle TimesTen In-Memory Database SQL Reference

8

Reserved Words 8-1

8Reserved Words

TimesTen reserves words for use in SQL statements.

To use one of these words as an identifier (such as a table name or column name),
enclose the reserved word in quotes. Otherwise, syntax errors may occur.

Reserved words

AGING

ALL

ANY

AS

BETWEEN

BINARY_DOUBLE_INFINITY

BINARY_DOUBLE_NAN

BINARY_FLOAT_INFINITY

BINARY_FLOAT_NAN

CASE

CHAR

COLUMN

CONNECTION

CONSTRAINT

CROSS

CURRENT_SCHEMA

CURRENT_USER

CURSOR

DATASTORE_OWNER

DATE

DECIMAL

DEFAULT

DESTROY

DISTINCT

FIRST

8-2 Oracle TimesTen In-Memory Database SQL Reference

FLOAT

FOR

FOREIGN

FROM

GROUP

HAVING

INNER

INTEGER

INTERSECT

INTERVAL

INTO

IS

JOIN

LEFT

LIKE

LONG

MINUS

NULL

ON

ORA_SYSDATE

ORDER

PRIMARY

PROPAGATE

PUBLIC

READONLY

RIGHT

ROWNUM

ROWS

SELECT

SELF

SESSION_USER

SET

SMALLINT

SOME

SYSDATE

SYSTEM_USER

TO

TT_SYSDATE

Reserved words

Reserved Words 8-3

UID

UNION

UNIQUE

UPDATE

USER

USING

VARCHAR

WHEN

WHERE

Reserved words

8-4 Oracle TimesTen In-Memory Database SQL Reference

Index-1

Index

 + , See addition
/ , See dividing

Symbols
%

in LIKE pattern strings, 4-21
& operator, 3-3
* , See multiplying
+ operator

WHERE clause, 5-158
^ operator, 3-4
_

in LIKE pattern string, 4-21
| operator, 3-4
|| operator, 3-4
~ operator, 3-4

A
ABS, 3-26
ADD column, 5-33
ADD ELEMENT

replication, 5-15
ADD SUBSCRIBER

replication, 5-15
ADD_MONTHS, 3-27
addition, 3-3
ADMIN system privilege

definition, 6-1
aggregate functions

ALL, 3-8
and overflow, 1-32
AVG, 3-8
COUNT *, 3-8
COUNT ColumnName, 3-8
DISTINCT, 3-8
in query, 5-168
MAX, 3-8
MIN, 3-8
over empty, ungrouped table, 3-8
SQL syntax, 3-8
SUM, 3-8

AggregateFunction
in expressions, 3-3

AGING, 8-1

aging
cache groups, 5-58

ALL, 8-1
defined, 3-8
in SELECT statements, 5-157

ALL/ NOT IN predicate (subquery), 4-4
ALL_ARGUMENTS PL/SQL system view, 7-4
ALL_COL_PRIVS view, 7-7
ALL_DEPENDENCIES PL/SQL system view, 7-8
ALL_DIRECTORIES view, 7-9
ALL_ERRORS PL/SQL system view, 7-10
ALL_EXTERNAL_TABLES view, 7-1
ALL_IDENTIFIERS PL/SQL system view, 7-11
ALL_OBJECTS PL/SQL system view, 7-12
ALL_PLSQL_OBJECT_SETTINGS PL/SQL system

view, 7-13
ALL_PROCEDURES PL/SQL system view, 7-14
ALL_SOURCE PL/SQL system view, 7-16
ALL_STORED_SETTINGS PL/SQL system

view, 7-17
ALL_SYNONYMS system view, 7-1
ALL_TAB_PRIVS system view, 7-18
ALL_USERS system view, 7-19
ALL/NOT IN predicate (value list), 4-6
ALTER ACTIVE STANDBY PAIR, 5-2
ALTER ANY CACHE GROUP system privilege

definition, 6-1
ALTER ANY INDEX system privilege

definition, 6-1
ALTER ANY MATERIALIZED VIEW system

privilege
definition, 6-1

ALTER ANY PROCEDURE system privilege
definition, 6-1

ALTER ANY SEQUENCE system privilege
definition, 6-1

ALTER ANY TABLE system privilege
definition, 6-1

ALTER ANY VIEW system privilege
definition, 6-1

ALTER CACHE GROUP, 5-6
AUTOREFRESH, 5-6, 5-58
READONLY, 5-6

ALTER ELEMENT
DROP MASTER, 5-21
DROP SUBSCRIBER, 5-20

Index-2

replication, 5-16
ALTER FUNCTION, 5-8
ALTER PACKAGE, 5-10
ALTER PROCEDURE, 5-12
ALTER REPLICATION, 5-14
ALTER SESSION

defined, 5-23
ALTER SUBSCRIBER

replication, 5-16
ALTER TABLE

ADD column, 5-33
defined, 5-28
DROP column, 5-33
PRIMARY KEY, 5-33
table names, 5-29

ALTER USER, 5-40
altering

active standby pair, 5-2
replication, 5-14
session parameters, 5-23
tables, 5-28

and ON DELETE CASCADE, 5-34
ANSI SQL data types, 1-5
ANY, 8-1
ANY/ IN predicate (subquery), 4-8
ANY/ IN predicate (value list), 4-10
ANY predicate

defined, 4-8
example, 4-8
operators, 4-8
SQL syntax, 4-8

approximate data types, 1-15
ARGUMENT$ PL/SQL system table, 7-2
arithmetic operations

and overflow, 1-32
arithmetic operators

in expressions, 3-4
AS, 8-1
ASC | DESC

defined, 5-65
ASCII characters, 3-12
ASCIISTR, 3-29
asynchronous materialized view

creating, 5-69
attributes

altering, 5-2
AUTOREFRESH

ALTER CACHE GROUP, 5-58
FULL, 5-57
in cache groups, 5-57
INCREMENTAL, 5-57
INTERVAL, 5-7
STATE, 5-7

AVG (aggregate function)
defined, 3-8

B
basic names

definition, 2-1

objects having, 2-1
rules, 2-1

BETWEEN, 8-1
BETWEEN predicate

defined, 4-13
in search conditions, 4-2
SQL syntax, 4-13

BIGINT data type, 1-33
BINARY data type, 1-1, 1-20, 1-26, 1-33
BINARY_DOUBLE data type, 1-1, 1-20, 1-26, 1-33
BINARY_DOUBLE_INFINITY, 8-1
BINARY_DOUBLE_NAN, 8-1
BINARY_FLOAT data type, 1-2, 1-20, 1-26, 1-33
BINARY_FLOAT_INFINITY, 8-1
BINARY_FLOAT_NAN, 8-1
bitwise AND operator, 3-3
bitwise NOT operator, 3-4
bitwise OR operator, 3-4
bucket count, 5-105

C
cache grid, 5-59

definition, 0-xvi
cache group

definition, 5-49
cache group instance

definition, 5-49
cache groups

aging, 5-58
ALTER CACHE GROUP statement, 5-6
CREATE CACHE GROUP statement, 5-49
DROP CACHE GROUP statement, 5-122
dynamic, 5-50
explicitly loaded, 5-50
FLUSH CACHE GROUP statement, 5-135
global, 5-50
LOAD CACHE GROUP statement, 5-143
local, 5-50
restrictions, 5-56
system managed, 5-49
UNLOAD CACHE GROUP statement, 5-176
user managed, 5-49
user manager, 5-49

CACHE_GROUP system table, 7-20
CACHE_MANAGER privilege hierarchy, 6-4
CACHE_MANAGER system privilege

definition, 6-1
CASE, 8-1
CEIL, 3-34
CHAR, 8-1
CHAR data type, 1-2, 1-11, 1-26, 1-33
CHAR VARYING data type, 1-6
CHARACTER

values in constants, 3-11
character data

and truncation, 1-32
character data types, 1-11
character string, 3-11
CHARACTER VARYING data type, 1-6

Index-3

CharacterString
defined, 3-11

CHECK CONFLICTS
replication, 5-89
syntax, 5-89

CHR, 3-33
CLIENTFAILOVER system table, 7-2
COALESCE, 3-35
CODE_PIECES PL/SQL system view, 7-2
CODE_SIZE PL/SQL system view, 7-2
COL_STATS system table, 7-24
COLUMN, 8-1
column alias

in SELECT statement, 5-159, 5-167
column definition, 5-104
column names

in INSERT SELECT statements, 5-142
in NULL predicates, 4-20

column reference
in SELECT statements, 5-159
syntax, 5-159

COLUMN_HISTORY system table, 7-1
ColumnName

in expressions, 3-3
columns, 5-104

defining, 5-100
in tables, 5-100

COLUMNS system table, 7-22
COMMIT, 5-42
comparing data types in search conditions, 4-3
comparison predicate

example, 4-15
in search conditions, 4-2
operators, 4-14
SQL syntax, 4-4, 4-8, 4-14

compound identifiers, 2-2
CONCAT, 3-36
concatenate operator, 3-4
conflict resolution

check conflicts, 5-16
replication, 5-89

CONNECTION, 8-1
constants

CHARACTER values, 3-11
DATE values, 3-12, 3-13
defined, 3-11
fixed point values, 3-11
FLOAT values, 3-11
HEXIDECIMAL values, 3-12
in expressions, 3-3
in NULL predicates, 4-20
INTEGER values, 3-11
SQL syntax, 3-11
strings, 3-11
TIME values, 3-13
TIMESTAMP values, 3-14

CONSTRAINT, 8-1
constraints, defining, 5-99
correlation names in SELECT statements, 5-168
COUNT * (aggregate function)

defined, 3-8
COUNT ColumnName (aggregate function)

defined, 3-8
CREATE ACTIVE STANDBY PAIR, 5-43
CREATE ANY CACHE GROUP system privilege

definition, 6-2
CREATE ANY INDEX system privilege

definition, 6-2
CREATE ANY MATERIALIZED VIEW system

privilege
definition, 6-2

CREATE ANY PROCEDURE system privilege
definition, 6-2

CREATE ANY SEQUENCE system privilege
definition, 6-2

CREATE ANY TABLE system privilege
definition, 6-2

CREATE ANY VIEW system privilege
definition, 6-2

CREATE CACHE GROUP system privilege
definition, 6-2

CREATE FUNCTION, 5-62
defined, 5-62

CREATE GLOBAL TEMPORARY TABLE, 5-99,
5-100

CREATE INDEX
defined, 5-65
example, 5-68
index name, 5-65
table names, 5-65
tables without rows, 5-66
UNIQUE clause, 5-65

CREATE MATERIALIZED VIEW
defined, 5-69

CREATE MATERIALIZED VIEW LOG
statement, 5-74

CREATE MATERIALIZED VIEW system privilege
definition, 6-2

CREATE PACKAGE, 5-76
defined, 5-76

CREATE PACKAGE BODY, 5-78
defined, 5-78

CREATE PROCEDURE, 5-79
defined, 5-79

CREATE PROCEDURE system privilege
definition, 6-2

CREATE REPLICATION, 5-82
CREATE SEQUENCE, 5-96

defined, 5-96
CREATE SEQUENCE system privilege

definition, 6-2
CREATE SESSION system privilege

definition, 6-2
CREATE TABLE

defined, 5-99
examples, 5-108
FOREIGN KEY, 5-101
HashColumnName option, 5-101
maximum columns, 5-100, 5-104
maximum page number, 5-101

Index-4

PRIMARY KEY, 5-100
CREATE TABLE system privilege

definition, 6-2
CREATE USER, 5-114
CREATE VIEW, 5-116

defined, 5-116
CREATE VIEW system privilege

definition, 6-2
creating, 5-163

active standby pairs, 5-43
cache groups, 5-49
constraints, 5-99
functions, 5-62
indexes, 5-65
materialized views, 5-69
procedures, 5-79
sequences, 5-96
tables, 5-99
users, 5-114
views, 5-116

CROSS, 8-1
CURRENT_SCHEMA, 8-1
CURRENT_USER, 8-1
CURSOR, 8-1

D
d (ODBC-date-literal syntax), 3-13
DATA data type

using, 1-23
Data Definition Language (DDL), 5-1
Data Manipulation Language (DML), 5-1
data overflow, 1-31
data truncation, 1-31
data types

ANSI SQL, 1-5
approximate types, 1-15
backward compatibility support, 1-7
character types, 1-11
comparison rules, 1-27
conversion, 1-28
effect of, 1-1
exact and approximate, 1-15
exact types, 1-15
modes, 1-1
specifications, 1-1
storage requirements, 1-26
TimesTen/Oracle compatibility, 1-7, 1-9
unsupported

TIMEZONE, 1-24
DATASTORE, 5-84
DATASTORE_OWNER, 8-1
DATE, 8-1

ODBC-date-literal syntax, 3-13
values in constants, 3-12, 3-13

DATE and TIME data types
using, 1-23

DATE data type, 1-2, 1-22, 1-23, 1-26, 1-33
DateLiteral

defined, 3-13

DateString
defined, 3-12

datetime and interval types
arithmetic operations, 1-24

datetime data types, 1-22
using, 1-23

datetime format model for TO_CHAR of TT_
TIMESTAMP and TT_DATE, 3-23

datetime format models, 3-20
DBA_ARGUMENTS PL/SQL system view, 7-4
DBA_COL_PRIVS view, 7-26
DBA_DEPENDENCIES PL/SQL system view, 7-8
DBA_DIRECTORIES view, 7-9
DBA_ERRORS PL/SQL system view, 7-10
DBA_IDENTIFIERS PL/SQL system view, 7-11
DBA_INVALID_OBJECTS PL/SQL system

view, 7-2
DBA_OBJECT_SIZE PL/SQL system table, 7-32
DBA_OBJECTS PL/SQL system view, 7-12
DBA_PLSQL_OBJECT_SETTINGS PL/SQL system

view, 7-13
DBA_PROCEDURES PL/SQL system view, 7-14
DBA_SOURCE PL/SQL system view, 7-16
DBA_STORED_SETTINGS PL/SQL system

view, 7-17
DBA_SYNONYMS system view, 7-1
DBA_SYS_PRIVS view, 7-37
DBA_TB_PRIVS view, 7-38
DBA_USERS system view, 7-39
DECIMAL, 8-1
DECIMAL data type, 1-7
DECODE, 3-38
DEFAULT, 8-1
DEFAULT column value, 5-104, 5-140
defining, 5-104
DELETE

and DROP TABLE, 5-118
defined, 5-118
search conditions, 5-118

DELETE ANY TABLE system privilege
definition, 6-2

DELETE object privilege
definition, 6-3

deleting
indexes, 5-133
rows, 5-118
tables, 5-133

DEPENDENCY$ PL/SQL system table, 7-2
derived table, 5-158, 5-171
derived tables, 5-163, 5-171

restrictions, 5-71
DerivedTable, 5-171
described, 5-171
DESTROY, 8-1
detail table, 5-107

restrictions, 5-148
VIEWS, 5-116

detail tables, 5-34, 5-70, 5-174
in materialized views, 5-70

DIR$ system table, 7-1

Index-5

DISK_AND_FIXED_OBJECTS PL/SQL system
view, 7-2

DISTINCT, 8-1
and subqueries, 3-6
defined, 3-8
in SELECT, 5-158

dividing, 3-3
dividing expressions, 3-3
DOUBLE PRECISION data type, 1-6
DROP ACTIVE STANDBY PAIR, 5-121
DROP ANY CACHE GROUP system privilege

definition, 6-2
DROP ANY INDEX system privilege

definition, 6-2
DROP ANY MATERIALIZED VIEW system privilege

definition, 6-2
DROP ANY PROCEDURE system privilege

definition, 6-2
DROP ANY SEQUENCE system privilege

definition, 6-2
DROP ANY TABLE system privilege

definition, 6-2
DROP ANY VIEW system privilege

definition, 6-2
DROP CACHE GROUP, 5-122
DROP column, 5-33
DROP ELEMENT

replication, 5-17
DROP FUNCTION, 5-123
DROP INDEX, 5-124
DROP MATERIALIZED VIEW LOG

statement, 5-127
DROP PROCEDURE, 5-128, 5-130
DROP REPLICATION, 5-132
DROP SEQUENCE, 5-131
DROP TABLE, 5-133
DROP USER, 5-134
dropping

active standby pairs, 5-121
cache groups, 5-122
functions, 5-123
indexes, 5-124, 5-133
procedures, 5-128, 5-130
replication schemes, 5-132
sequences, 5-131
tables, 5-133
views, 5-126

DUAL system table, 7-40
duplicate parameters, 2-3
DURABLE, 5-88
dynamic cache group

definition, 0-xvi
dynamic cache groups, 5-50
dynamic parameters

example, 3-5
in expressions, 3-5
in LIKE predicate, 4-21
in single row inserts, 5-139
names, 2-2
naming rules, 2-2

DynamicParameter
in expressions, 3-3

E
ELEMENT

replication, 5-85
ERROR$ PL/SQL system table, 7-2
ERROR_SIZE PL/SQL system view, 7-2
escape character

in LIKE predicate, 4-21
escaped Unicode characters, 3-12
exact data types, 1-15
exclusive OR operator, 3-4
EXECUTE ANY PROCEDURE system privilege

definition, 6-2
EXECUTE object privilege

definition, 6-3
EXISTS predicate, 4-16

defined, 4-16
SQL syntax, 4-16

ExistsPredicate, 4-2
expressions

arithmetic operators in, 3-4
bitwise AND operator, 3-3
bitwise NOT operator, 3-4
bitwise OR operator, 3-4
concatenate operators, 3-4
exclusive OR operator, 3-4
in aggregate functions, 3-8
in BETWEEN predicates, 4-13
in comparison predicate, 4-4, 4-8, 4-14
in IS INFINITE predicate, 4-18
in LIKE predicates, 4-21
in NAN predicates, 4-19
in NULL predicates, 4-20
in UPDATE statements, 5-178
ROWID, 3-1
ROWNUM, 3-1
specification, 3-3
SQL syntax, 3-3

F
FAILTHRESHOLD, 5-17, 5-45, 5-85
FIRST, 8-1
FixedPointValue, 3-11

defined, 3-11
FLOAT, 8-2

values in constants, 3-11
FLOAT and FLOAT (n) data types, 1-20
FLOAT data type, 1-6
floating-point numbers, 1-19
FloatValue

defined, 3-11
FLOOR, 3-40
FLUSH ANY CACHE GROUP system privilege

definition, 6-2
FLUSH CACHE GROUP, 5-135
FLUSH object privilege

Index-6

definition, 6-3
FOR, 8-2
FOREIGN, 8-2
FOREIGN KEY option

in CREATE TABLE statement, 5-101
format model for ROUND and TRUNC date

functions, 3-23
format model for TO_CHAR of TimesTen

types, 3-23
Format Models, 3-16
FROM, 8-2
fully qualified name

name
fully qualified, 2-2

names
fully qualified, 2-2

functions
creating, 5-62

G
Global and non-global cache groups, 5-50
global cache group

definition, 0-xvi
GLOBAL TEMPORARY TABLE, 5-99, 5-100
global temporary table

object privilege, 5-100
GRANT, 5-137
GREATEST, 3-41
GROUP, 8-2
GROUP BY

in aggregate functions, 3-8
in SELECT statements, 5-158

H
hash index

examples, 5-108
for table, 5-101

HashColumnName option
in CREATE TABLE statement, 5-101

HAVING, 8-2
in SELECT statements, 5-159

HEXIDECIMAL
values in constants, 3-12

HexidecimalString
defined, 3-12

I
IDL_CHAR$ PL/SQL system table, 7-2
IDL_SB4$ PL/SQL system table, 7-2
IDL_UB1$ PL/SQL system table, 7-2
IDL_UB2$ PL/SQL system table, 7-2
IN predicate

in search conditions, 4-2
in TableSpec, 5-158
index names

in CREATE INDEX, 5-65
in DROP INDEX, 5-124

INDEX object privilege

definition, 6-3
index owner (not specified), 5-124
indexes

creating, 5-65
dropping, 5-133
owner not specified, 5-124

INDEXES system table, 7-41
INF and NAN data types, 1-29
INLINE (NOT INLINE), 5-30, 5-104
INNER, 8-2
INSERT, 5-139

defined, 5-139
INSERT ANY TABLE system privilege

definition, 6-2
INSERT object privilege

definition, 6-3
INSERT SELECT, 5-142

defined, 5-142
omitted columns, 5-142
rows with defined values, 5-142

INTEGER, 8-2
values in constants, 3-11

INTEGER data type, 1-6, 1-34
IntegerValue

defined, 3-11
INTERSECT, 8-2
INTERVAL, 8-2
INTERVAL data type, 1-2, 1-26, 1-33
INTERVAL data types

using, 1-23
IntervalLiteral, 3-14
INTO, 8-2
IS, 8-2
IS INFINITE predicate, 4-18
IS NAN predicate, 4-19
IS NULL predicate, 4-20

defined, 4-20
SQL syntax, 4-18, 4-19, 4-20

J
JOIN, 8-2
join conditions

+ operator, 5-158
join types

INNER, 5-172
LEFT, 5-172
RIGHT, 5-172

JoinedTable, 5-172
joins

joining table to itself, 5-168
outer, 5-158

L
LEAST, 3-43
LEFT, 8-2
LIKE, 8-2
LIKE predicate

defined, 4-21

Index-7

in search conditions, 4-2
pattern matching of NCHAR and NVARCHAR

strings, 4-23
SQL syntax, 4-21

LOAD ANY CACHE GROUP system privilege
definition, 6-2

LOAD CACHE GROUP, 5-143
LOAD object privilege

definition, 6-3
logical operators

in search conditions, 4-2
LONG, 8-2
lower case letters in names, 2-1
LPAD, 3-46
LTRIM, 3-48

M
MASTER, 5-46, 5-86

replication, 5-18
DROP, 5-126
SQL statements

DROP, 5-126
materialized view log, 5-74
MAX (aggregate function)

defined, 3-8
maximum

columns in CREATE TABLE, 5-100, 5-104
items for DISTINCT option, 5-158
table cardinality, 5-105
tables per query, 5-158

MERGE, 5-147
MIN (aggregate function)

defined, 3-8
MINUS, 8-2
MONITOR system table, 7-43
multiplying, 3-3
multiplying expressions, 3-3
MVLOG$_ID

materialized view log, 5-74

N
names

basic names, 2-1
compound identifiers, 2-2
dynamic parameters, 2-2
lower case letters, 2-1
owner names, 2-1
simple names, 2-2
used in TimesTen, 2-1
user ID, 2-1

naming dynamic parameters, 2-2
naming rules, 2-1
NATIONAL CHAR data type, 1-6
NATIONAL CHAR VARYING data type, 1-6
NATIONAL CHARACTER data type, 1-6
NATIONAL CHARACTER VARYING data

type, 1-6
NationalCharacterString, 3-12

NCHAR, 1-2
defined, 4-23
example, 4-23

NCHAR data type, 1-12, 1-26, 1-34
NCHAR VARYING data type, 1-6
NCHR, 3-51
NCOMP_DLL$ PL/SQL system table, 7-2
NO RETURN, 5-86
NONDURABLE, 5-88
NOT INLINE (INLINE), 5-30, 5-104
NOT NULL

in CREATE TABLE, 5-105, 5-114, 5-137, 5-154
in INSERT SELECT, 5-142

NULL, 8-2
NULL predicate

in search conditions, 4-2
NULL storage, 1-13, 1-27
NULL values

defined, 1-29
in comparison predicates, 4-14
in search conditions, 4-3
in UPDATE statements, 5-178
INSERT statement, 5-140
sort order in CREATE INDEX, 5-66
sorting, 1-29
SQLBindCol, 1-29
SQLBindParameter, 1-29

NUMBER data type, 1-3, 1-15
NUMBER data type in TimesTen Mode, 1-36
number format models, 3-17
NUMERIC data type, 1-7
numeric data type truncation, 1-32
numeric data types, 1-15
numeric precedence, 1-21
NVARCHAR

defined, 4-23
example, 4-23

NVARCHAR2 data type, 1-3, 1-14, 1-26
NVL, 3-56

O
OBJ$ PL/SQL system table, 7-2
OBJAUTH$ system table, 7-1
object privilege, 6-3
OBJERROR$ PL/SQL system table, 7-2
ON, 8-2
ON EXCEPTION, 5-90
operators, 5-158

ANY, 4-8
comparison, 4-14

optimizer
PLAN system table, 7-48

ORA_CHAR data type, 1-36
ORA_DATE data type, 1-36
ORA_NCHAR data type, 1-36
ORA_NVARCHAR2 data type, 1-37
ORA_SYSDATE, 8-2
ORA_TIMESTAMP data type, 1-37
ORA_VARCHAR2 data type, 1-37

Index-8

Oracle data types supported in TimesTen type
mode, 1-36

ORDER, 8-2
ORDER BY

and subqueries, 3-6
in SELECT statement, 5-159
specifying result columns, 5-168

OUTER JOIN, 5-173
outer joins

conditions, 5-158
indicators, 5-158

overflow
during type conversion, 1-32
in aggregate functions, 1-32
in arithmetic operations, 1-32
of data, 1-31

owner names, 2-1
owners of index, 5-124

P
package body

creating, 5-78
packages

CREATE PACKAGE BODY statement, 5-78
CREATE PACKAGE statement, 5-76
creating, 5-76

parameters
duplicate, 2-3
inferring data type, 2-3

PARSED_PIECES PL/SQL system view, 7-2
PARSED_SIZE PL/SQL system view, 7-3
pattern matching in LIKE predicate, 4-21
performance

MONITOR system table, 7-43
PLAN system table, 7-48
PLSCOPE_ACTION$ PL/SQL system table, 7-2
PLSCOPE_IDENTIFIER$ PL/SQL system table, 7-2
PORT, 5-46, 5-86
POWER, 3-57
predicates

ANY, 4-8
BETWEEN, 4-13
comparison, 4-14
compatible data types, 4-3
EXISTS, 4-16
IS NULL, 4-20
LIKE, 4-21
null values, 4-3
order of evaluation, 4-3
Quantified, 4-6, 4-10

PRIMARY, 8-2
primary

definition, 3-3
in expressions, 3-3

PRIMARY KEY option
in CREATE TABLE statement, 5-100

privilege
object, 6-3
system, 6-1

privilege hierarchy, 6-4
PROCEDURE$ PL/SQL system table, 7-2
PROCEDUREINFO$ PL/SQL system table, 7-2
PROCEDUREPLSQL$ PL/SQL system table, 7-2
procedures

creating, 5-79
PROPAGATE, 8-2
PROPAGATOR

replication, 5-18
PUBLIC, 5-137, 8-2
PUBLIC role

privileges, 6-5
PUBLIC_DEPENDENCY PL/SQL system table, 7-51

Q
Quantified predicate

defined, 4-6, 4-10
in search conditions, 4-2
SQL syntax, 4-6, 4-10

queries
and aggregate functions, 5-168
results, 5-157
syntax, 5-157

R
READONLY, 8-2
REAL data type, 1-7
REFERENCES object privilege

definition, 6-3
REFRESH ANY CACHE GROUP system privilege

definition, 6-2
REFRESH CACHE GROUP statement, 5-150
REFRESH MATERIALIZED VIEW statement, 5-153
REFRESH object privilege

definition, 6-3
refreshing a cache group, 5-7
REPELEMENTS replication table, 7-84
replication, 5-87

ADD ELEMENT, 5-15
ADD SUBSCRIBER, 5-15
ALTER ELEMENT, 5-16
ALTER SUBSCRIBER, 5-16
CHECK CONFLICTS, 5-89
conflict resolution, 5-89, 5-90
DATASTORE ELEMENT, 5-84
DROP ELEMENT, 5-17
ELEMENT, 5-85
FAILTHRESHOLD, 5-17, 5-45, 5-85
MASTER, 5-18, 5-46, 5-86, 5-87
NO RETURN, 5-86
PORT, 5-46, 5-86
PROPAGATOR, 5-18
restrictions, 5-90
RETURN RECEIPT, 5-19, 5-86
SUBSCRIBER, 5-19, 5-46, 5-86, 5-87
TIMEOUT, 5-20, 5-87
TIMESTAMP, 5-89, 5-90
TRANSMIT, 5-88

Index-9

replication element, 5-82
replication scheme, 5-82
REPLICATIONS replication table, 7-87
REPNETWORK replication table, 7-88
REPPEERS replication table, 7-89
REPSTORES replication table, 7-91
REPSUBSCRIPTIONS replication table, 7-92
REPTABLES replication table, 7-93
reserved words, 8-1
restrictions, 5-70, 5-107, 5-171, 5-174
result columns in SELECT statement, 5-168
RETURN RECEIPT

ALTER SUBSCRIBER, SET, 5-16
BY REQUEST, 5-86
NO RETURN, 5-86
replication, 5-19, 5-86

RETURN TWOSAFE
BY REQUEST, 5-19
replication, 5-19, 5-87
RETURN SERVICES, 5-87

REVOKE, 5-154
RIGHT, 8-2
ROLLBACK, 5-156
ROUND (date), 3-58
ROUND (expression), 3-59
ROWID, 1-3

in expressions, 3-3
rowid, 1-21, 3-1
ROWID data type

description, 1-21
explicit conversion, 1-22
implicit conversion, 1-22
in expressions, 1-21
INSERT SELECT, 1-22

ROWNUM, 3-1, 8-2
ROWNUM specification, 3-1
ROWS, 8-2
rows

inserting, 5-139
retrieving, 5-157
selecting, 5-157

RPAD, 3-61

S
search condition

compatible predicates, 4-3
type conversion, 4-3
value extensions, 4-3

search conditions
general syntax, 4-2
logical operators in, 4-2
SQL syntax, 4-2

SELECT, 8-2
defined, 5-157
GROUP BY clause, 5-158
HAVING clause, 5-159
maximum columns, 5-167
maximum tables per query, 5-158
ORDER BY clause, 5-159

select list, 5-158
selecting data, 5-157
unique rows, 5-158
WHERE clause, 5-158

SELECT ANY SEQUENCE system privilege
definition, 6-2

SELECT ANY TABLE system privilege
definition, 6-3

SELECT object privilege
definition, 6-3

SelectList
defined, 5-158
SQL syntax, 5-167

SELF, 8-2
SEQUENCES system table, 7-52
SESSION_ROLES view, 7-53
SESSION_USER, 8-2
SET, 8-2
SET clause

in ALTER ACTIVE STANDBY PAIR, 5-3
in ALTER CACHE GROUP statement, 5-6
in ALTER REPLICATION statement, 5-14
in ALTER SESSION statement, 5-23

SET PAGES, 5-28
SETTINGS$ PL/SQL system table, 7-2
SIGN, 3-65
simple names, 2-2
SMALLINT, 8-2
SMALLINT data type, 1-7, 1-34
SOME, 8-2
sorting of NULL values, 1-29
SOURCE$ PL/SQL system table, 7-2
SOURCE_SIZE PL/SQL system view, 7-3
special predicates

EXISTS predicate, 4-16
specifying, 5-173
SQL naming rules, 2-1
SQL statements

ALTER REPLICATION, 5-14
ALTER SESSION, 5-23
ALTER TABLE, 5-28
CREATE CACHE GROUP, 5-49
CREATE FUNCTION, 5-62
CREATE INDEX, 5-65
CREATE MATERIALIZED VIEW, 5-69
CREATE PACKAGE, 5-76
CREATE PACKAGE BODY, 5-78
CREATE PROCEDURE, 5-79
CREATE SEQUENCE, 5-96
CREATE TABLE, 5-99
CREATE VIEW, 5-116
DELETE, 5-118
DROP CACHE GROUP, 5-122
DROP FUNCTION, 5-123
DROP PROCEDURE, 5-128, 5-130
DROP REPLICATION, 5-132
DROP SEQUENCE, 5-131
DROP TABLE

, 5-133
FLUSH CACHE GROUP, 5-135

Index-10

INSERT, 5-139
INSERT SELECT, 5-142
LOAD CACHE GROUP, 5-143
SELECT, 5-157
UNLOAD CACHE GROUP, 5-176
UPDATE, 5-178

SQL syntax
CREATE PACKAGE, 5-76
CREATE PACKAGE BODY, 5-78
CREATE PROCEDURE, 5-79

SQL_C_BINARY, 7-1
SQLBindCol

and NULL values, 1-29
SQLBindParameter

and NULL values, 1-29
SQRT, 3-67
statistics

COL_STATS system table, 7-24, 7-60
TBL_STATS system table, 7-59, 7-67

storage requirements, 1-26
string functions, 3-68
strings

in constants, 3-11
truncated in UPDATE statement, 5-179

subqueries, 3-6
subquery

in EXISTS predicates, 4-16
SUBSCRIBER

replication, 5-19, 5-87
subtraction operator

in expressions, 3-3
SUM(aggregate function)

defined, 3-8
SYN$ system table, 7-1
SYS_CONTEXT SQL function, 3-72
SYSDATE, 8-2
system managed cache group, 5-49
system privilege, 6-1
system tables, 2-1

described, 7-1
SYSTEM_PRIVILEGE_MAP system table, 7-54
SYSTEM_USER, 8-2
SYSTEMSTATS system table, 7-1

T
t (ODBC-time-literal syntax), 3-13
table hash indexes

pages in, 5-101
table names

in ALTER TABLE, 5-29
in CREATE INDEX, 5-65
in CREATE TABLE, 5-100
in DROP INDEX, 5-124
in INSERT SELECT statements, 5-142

table owner (not specified), 5-124
table statistics system table, 7-59, 7-67
TABLE_HISTORY system table, 7-1
TABLE_PRIVILEGE_MAP system table, 7-55
tables

creating, 5-99
derived, 5-171
dropping, 5-133
inserting rows, 5-139
maximum cardinality, 5-105
maximum per query, 5-158
owner not specified, 5-124
unique constraints, 5-179

tables reserved for internal use, 7-1
TABLES system table, 7-56
TableSpec, 5-170
TBL_STATS system table, 7-59, 7-67
TCOL_STATS system table, 7-60
TEMP_IN_USE_HIGH_WATER, 7-44
temporary table, 5-99, 5-100

object privilege, 5-100
TIME

ODBC-time-literal syntax, 3-13
values in constants, 3-13

TIME data type, 1-3, 1-22, 1-23, 1-34
TimeLiteral, 3-13

defined, 3-13
TIMEOUT

replication, 5-20, 5-87
TIMESTAMP

CHECK CONFLICTS, 5-89
ODBC timestamp literal syntax, 3-14
replication, 5-89, 5-90
values in constants, 3-14

TIMESTAMP data type, 1-3, 1-23, 1-26, 1-34
TimestampLiteral, 3-14

defined, 3-14
TimestampString, 3-14
TimesTen data type mapping, 1-9
TimesTen interval, 1-23
TimesTen type mode, 1-32
TimeString, 3-13
TIMEZONE data type

conversions, 1-24
TINDEXES, 7-61
TINDEXES system table, 7-61
TINYINT data type, 1-34
TO

reserved word, 8-2
TO_CHAR function, 3-76

SQL syntax, 3-76, 3-79
TO_DATE function, 3-78

SQL syntax, 3-78
TO_NUMBER function, 3-79
TRANSACTION_LOG_API system table, 7-63
TRANSACTION_LOG_API table, 7-60
TRANSMIT

DURABLE/NONDURABLE, 5-88
replication, 5-88

TRIM, 3-80
TRUNC (date), 3-83
TRUNC (expression), 3-84
TRUNCATE TABLE, 5-174
truncation

and numeric data, 1-32

Index-11

in character data, 1-32
of data, 1-31

ts (ODBC-timestamp-literal syntax), 3-14
TT_BIGINT data type, 1-17, 1-26
TT_CHAR data type, 1-8
TT_DATE data type, 1-4, 1-23, 1-27
TT_DECIMAL data type, 1-8, 1-27
TT_HASH, 3-85
TT_INTEGER, 1-4
TT_INTEGER data type, 1-18, 1-27, 1-34
TT_NCHAR data type, 1-9
TT_NVARCHAR data type, 1-9, 1-35
TT_SMALLINT data type, 1-19, 1-27
TT_SYSDATE, 8-2
TT_TIME data type, 1-27
TT_TIMESTAMP data type, 1-4, 1-27
TT_TINYINT data type, 1-19, 1-27
TT_VARCHAR data type, 1-9, 1-35
TTABLES, 7-64
TTABLES system table, 7-64
TTBL_STATS system table, 7-67
ttRepSyncSet built-in procedure, 5-45
TTSTORES replication table, 7-96
type conversion

and overflow, 1-32
type mode, 1-1
TypeMode connection attribute, 1-1

U
UID, 8-3
UID SQL function, 3-86
unary minus

in expressions, 3-3
unary plus

in expressions, 3-3
underflow

defined, 1-32
Unicode characters

example, 4-23
pattern matching, 4-23

UNION, 8-3
UNIQUE, 8-3
unique constraints

on tables, 5-179
UNIQUE INDEX

defined, 5-65
unique rows, 5-158
UNISTR, 3-87
UNLOAD ANY CACHE GROUP system privilege

definition, 6-3
UNLOAD CACHE GROUP

defined, 5-176
UNLOAD object privilege

definition, 6-3
UPDATE, 8-3

defined, 5-178
string truncation, 5-179
WHERE clause omitted, 5-179

UPDATE ANY TABLE system privilege

definition, 6-3
UPDATE FIRST N, 5-178
UPDATE object privilege

definition, 6-3
UPDATE SET clause

in MERGE statement, 5-147
USER, 8-3
USER functions, 3-88
user ID in names, 2-1
user managed cache group, 5-49
USER$ PL/SQL system table, 7-2
USER_ARGUMENTS PL/SQL system view, 7-4
USER_ASTATUS_MAP system table, 7-2
USER_COL_PRIVS view, 7-69
USER_DEPENDENCIES PL/SQL system view, 7-8
USER_ERRORS PL/SQL system view, 7-10
USER_IDENTIFIERS PL/SQL system view, 7-11
USER_OBJECT_SIZE PL/SQL system view, 7-32
USER_OBJECTS PL/SQL system view, 7-12
USER_PLSQL_OBJECT_SETTINGS PL/SQL system

view, 7-13
USER_PROCEDURES PL/SQL system view, 7-14
USER_SOURCE PL/SQL system view, 7-16
USER_STORED_SETTINGS PL/SQL system

view, 7-17
USER_SYNONYMS system view, 7-1
USER_SYS_PRIVS view, 7-79
USER_TAB_PRIVS view, 7-80
USER_USERS system view, 7-81
USING, 8-3
UTF-8 Unicode characters, 3-12
UTL_RECOMP_ALL_OBJECTS PL/SQL system

view, 7-2
UTL_RECOMP_COMPILED PL/SQL system

table, 7-2
UTL_RECOMP_ERRORS PL/SQL system table, 7-2
UTL_RECOMP_INVALID_ALL PL/SQL system

view, 7-2
UTL_RECOMP_INVALID_PARALLEL PL/SQL

system view, 7-2
UTL_RECOMP_SORTED PL/SQL system table, 7-2

V
VARBINARY data type, 1-5, 1-20, 1-27, 1-35
VARCHAR, 8-3
VARCHAR data type, 1-5
VARCHAR2 data type, 1-5, 1-13, 1-27
variables in SQL statements, 2-2
VIEW, 5-126
VIEW statement, 5-126
views

CREATE MATERIALIZED VIEW statement, 5-69
CREATE VIEW statement, 5-116
restrictions on detail tables, 5-70
restrictions on queries, 5-71, 5-116
restrictions on views, 5-70

VIEWS system table, 7-82

Index-12

W
WARNING_SETTINGS$ PL/SQL system table, 7-2
WHEN, 8-3
WHERE, 8-3
WHERE clause, 5-158

X
XLA system privilege

definition, 6-3
XLASUBSCRIPTIONS system table, 7-83

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility
	Technical support

	What’s New in SQL
	Access Control
	PL/SQL support
	Oracle In-Memory Database Cache (IMDB Cache)
	Asynchronous materialized views
	RETURNING ... INTO clause
	ROWID data type
	Duplicate parameter names
	Bitmap indexes
	Set operators in subqueries
	Enhanced ":" parameter markers
	Multiline C-style comments
	View and sequence names

	1 Data Types
	Type specifications
	ANSI SQL data types
	Types supported for backward compatibility in Oracle type mode
	TimesTen type mapping
	Character data types
	CHAR
	NCHAR
	VARCHAR2
	NVARCHAR2

	Numeric data types
	Exact and approximate numeric data types
	NUMBER
	TT_BIGINT
	TT_INTEGER
	TT_SMALLINT
	TT_TINYINT
	Floating-point numbers

	BINARY and VARBINARY data types
	Numeric precedence
	ROWID data type
	Datetime data types
	DATE
	TIME
	TIMESTAMP
	TT_DATE
	TT_TIMESTAMP

	TimesTen intervals
	Using INTERVAL data types
	Using DATE and TIME data types
	Handling timezone conversions
	Datetime and interval data types in arithmetic operations
	Restrictions on datetime and interval arithmetic operations

	Storage requirements
	Data type comparison rules
	Numeric values
	Date values
	Character values
	Binary and linguistic sorting
	Blank-padded and nonpadded comparison semantics

	Data type conversion
	Implicit data type conversion

	NULL values
	INF and NAN
	Constant values
	Primary key values
	Selecting Inf and NaN (floating-point conditions)
	Expressions involving Inf and NaN

	Overflow and truncation
	Underflow
	Replication limits
	TimesTen type mode (backward compatibility)
	Data types supported in TimesTen type mode
	Oracle data types supported in TimesTen type mode

	2 Names and Parameters
	Basic names
	Owner names
	Compound identifiers
	Dynamic parameters
	Duplicate parameter names
	Inferring data type from parameters

	3 Expressions
	ROWID specification
	ROWNUM specification
	Expression specification
	Subqueries
	Aggregate functions
	Constants
	Format models
	Number format models
	Datetime format models
	Datetime format elements
	Format model for ROUND and TRUNC date functions
	Format model for TO_CHAR of TimesTen datetime data types

	ABS
	ADD_MONTHS
	ASCIISTR
	CASE
	CAST
	CHR
	CEIL
	COALESCE
	CONCAT
	DECODE
	EXTRACT
	FLOOR
	GREATEST
	LEAST
	LOWER and UPPER
	LPAD
	LTRIM
	MOD
	NCHR
	NLSSORT
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	NVL
	POWER
	ROUND (date)
	ROUND (expression)
	RPAD
	RTRIM
	SIGN
	SQRT
	String functions
	SUBSTR
	INSTR
	LENGTH

	SYS_CONTEXT
	SYSDATE and GETDATE
	TO_CHAR
	TO_DATE
	TO_NUMBER
	TRIM
	TRUNC (date)
	TRUNC (expression)
	TT_HASH
	UID
	UNISTR
	USER functions
	CURRENT_USER
	USER
	SESSION_USER
	SYSTEM_USER

	4 Search Conditions
	Search condition general syntax
	ALL/ NOT IN predicate (subquery)
	ALL/NOT IN predicate (value list)
	ANY/ IN predicate (subquery)
	ANY/ IN predicate (value list)
	BETWEEN predicate
	Comparison predicate
	EXISTS predicate
	IS INFINITE predicate
	IS NAN predicate
	IS NULL predicate
	LIKE predicate
	NCHAR and NVARCHAR2

	5 SQL Statements
	Comments within SQL statements
	ALTER ACTIVE STANDBY PAIR
	ALTER CACHE GROUP
	ALTER FUNCTION
	ALTER PACKAGE
	ALTER PROCEDURE
	ALTER REPLICATION
	ALTER SESSION
	ALTER TABLE
	ALTER USER
	COMMIT
	CREATE ACTIVE STANDBY PAIR
	CREATE CACHE GROUP
	CREATE FUNCTION
	CREATE INDEX
	CREATE MATERIALIZED VIEW
	CREATE MATERIALIZED VIEW LOG
	CREATE PACKAGE
	CREATE PACKAGE BODY
	CREATE PROCEDURE
	CREATE REPLICATION
	CHECK CONFLICTS

	CREATE SEQUENCE
	CREATE TABLE
	Column Definition

	CREATE USER
	CREATE VIEW
	DELETE
	DROP ACTIVE STANDBY PAIR
	DROP CACHE GROUP
	DROP FUNCTION
	DROP INDEX
	DROP [MATERIALIZED] VIEW
	DROP MATERIALIZED VIEW LOG
	DROP PACKAGE [BODY]
	DROP PROCEDURE
	DROP SEQUENCE
	DROP REPLICATION
	DROP TABLE
	DROP USER
	FLUSH CACHE GROUP
	GRANT
	INSERT
	INSERT...SELECT
	LOAD CACHE GROUP
	MERGE
	REFRESH CACHE GROUP
	REFRESH MATERIALIZED VIEW
	REVOKE
	ROLLBACK
	SELECT
	SelectList
	TableSpec
	DerivedTable
	JoinedTable

	TRUNCATE TABLE
	UNLOAD CACHE GROUP
	UPDATE
	Join update

	6 Privileges
	System privileges
	Object privileges
	Privilege hierarchy
	The PUBLIC role

	7 System and Replication Tables
	Tables and views reserved for internal or future use
	Required privileges to access system tables and views
	SYS.ALL_ARGUMENTS
	SYS.ALL_COL_PRIVS
	SYS.ALL_DEPENDENCIES
	SYS.ALL_DIRECTORIES
	SYS.ALL_ERRORS
	SYS.ALL_IDENTIFIERS
	SYS.ALL_OBJECTS
	SYS.ALL_PLSQL_OBJECT_SETTINGS
	SYS.ALL_PROCEDURES
	SYS.ALL_SOURCE
	SYS.ALL_STORED_SETTINGS
	SYS.ALL_TAB_PRIVS
	SYS.ALL_USERS
	SYS.CACHE_GROUP
	SYS.COLUMNS
	SYS.COL_STATS
	SYS.DBA_ARGUMENTS
	SYS.DBA_COL_PRIVS
	SYS.DBA_DEPENDENCIES
	SYS.DBA_DIRECTORIES
	SYS.DBA_ERRORS
	SYS.DBA_IDENTIFIERS
	SYS.DBA_OBJECTS
	SYS.DBA_OBJECT_SIZE
	SYS.DBA_PLSQL_OBJECT_SETTINGS
	SYS.DBA_PROCEDURES
	SYS.DBA_SOURCE
	SYS.DBA_STORED_SETTINGS
	SYS.DBA_SYS_PRIVS
	SYS.DBA_TAB_PRIVS
	SYS.DBA_USERS
	SYS.DUAL
	SYS.INDEXES
	SYS.MONITOR
	SYS.PLAN
	SYS.PUBLIC_DEPENDENCY
	SYS.SEQUENCES
	SYS.SESSION_ROLES
	SYS.SYSTEM_PRIVILEGE_MAP
	SYS.TABLE_PRIVILEGE_MAP
	SYS.TABLES
	SYS.TBL_STATS
	SYS.TCOL_STATS
	SYS.TINDEXES
	SYS.TRANSACTION_LOG_API
	SYS.TTABLES
	SYS.TTBL_STATS
	SYS.USER_ARGUMENTS
	SYS.USER_COL_PRIVS
	SYS.USER_DEPENDENCIES
	SYS.USER_ERRORS
	SYS.USER_IDENTIFIERS
	SYS.USER_OBJECTS
	SYS.USER_OBJECT_SIZE
	SYS.USER_PLSQL_OBJECT_SETTINGS
	SYS.USER_PROCEDURES
	SYS.USER_SOURCE
	SYS.USER_STORED_SETTINGS
	SYS.USER_SYS_PRIVS
	SYS.USER_TAB_PRIVS
	SYS.USER_USERS
	SYS.VIEWS
	SYS.XLASUBSCRIPTIONS
	TTREP.REPELEMENTS
	TTREP.REPLICATIONS
	TTREP.REPNETWORK
	TTREP.REPPEERS
	TTREP.REPSTORES
	TTREP.REPSUBSCRIPTIONS
	TTREP.REPTABLES
	TTREP.TTSTORES

	8 Reserved Words
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

